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1 Introduction

This report was produced for the Rundfunk und Telekom Regulierungs-GmbH, Austria.

1.1 Scope of this report

This report contains:

1. An overview of the recently published results on the collision resistance of hash functions
of the MD4 family, in particular SHA, SHA-1, SHA-224, SHA-256 and RIPEMD-160.

2. A discussion of the impact of these results on cryptographic applications.

3. A discussion of the possibility to continue the use of SHA-1 in cryptographic applications
after collision attacks have been demonstrated.

In particular for the second and third point, this report presents only crypto-technical argu-
ments. Legal requirements, for instance as specified by technical annexes to the European
Directive on electronic signatures, cf. [11], and the Austrian signature law, are outside the
scope of this report. Also not considered are the possible discrepancies between technical
results and the public perception of these results (press coverage).

1.2 Unit of operation

As is customary in cryptographic literature, we express the (expected) computational com-
plexity of an attack using as unit operation one iteration of the hash function. A software
implementation of SHA-1 processing 128 Mbytes/s, executes 221 iterations of the hash func-
tion per second. Such a performance figure is easily achievable on a modern PC with a clock
speed of 2 GHz [6].

However, inventors of attacks are often slightly optimistic in estimating the workload of
their attacks and the performance achievable with optimized implementations of the hashing
algorithms in ‘real’ applications. This cannot always be duplicated in attacks.

2 The hash functions SHA, SHA-1, SHA-224, SHA-256, and
RIPEMD-160

In this section, we will shortly describe the hash functions SHA, SHA-1, SHA-224, SHA-256,
and RIPEMD-160, which are based on the design structure of MD4 [31]. This description
will illustrate that the designers of the SHA family of hash functions (the NSA) have tried to
remedy weaknesses in earlier designs by increasing the complexity in follow-up designs.

2.1 Iterated hash functions

All hash functions of the SHA family and RIPEMD-160 are iterated constructions. The
variable-length input message is padded and subsequently divided into blocks of fixed length.
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For the hash functions discussed in this report the block length is 512 bits. The hash functions
consist of the repeated application of a compression function denoted by fc, which takes as
inputs one message block mi and a chaining variable hi. The output is the updated value of
the chaining variable:

hi+1 ← fc(hi,mi). (1)

The initial value of the chaining variable is called IV and fixed by the designer. The final
value of the chaining variable is the hash function output, referred to as message digest or
fingerprint. The compression function consists of three parts:

Message expansion: The 512-bit input message block is expanded into a number of 32-bit
words. The number of expanded message words equals the number of steps in the state
update transformation.

State update transformation: The state update transformation consists of a number of
relatively simple steps. For the SHA family of hash functions, RIPEMD-160, and most
other hash functions in use today, the structure of the transformation is very similar to
an unbalanced Feistel network [34]. If we compare the state update with a Feistel-like
block cipher such as DES [25], then the chaining variable is used as ‘message input’
(plaintext) and the blocks of the expanded message are used as ‘round keys’.

Feed forward: The input of the state update transformation is added to the output value
after processing one message block. This is also called the Davies-Meyer construction
and ensures that if the input message block is fixed then the compression function is
non-invertible in the chaining variable.

2.2 SHA

The original design of the hash function SHA was published by NIST in 1993. It was with-
drawn in 1995 and replaced by SHA-1. Both SHA and SHA-1 produce a hash value of 160
bits.

Let a single 512-bit message block be denoted by a vector m, consisting of 16 32-bit words
Mi, with 0 ≤ i ≤ 15. These 32-bit words are then linearly expanded into 80 32-bit words Wi:

Wi =
{

Mi, for 0 ≤ i ≤ 15,
Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16 for 16 ≤ i ≤ 79 .

(2)

Besides the extension of the output length from 128 to 160 bits, this message expansion forms
the main difference between MD5 [32] and SHA.

The state update transformation operates on 5 32-bit registers, which are initialized with
the current value of the chaining variable (IV for processing the first message block). It
consists of 80 steps, divided into 4 rounds of 20 steps each. A single step of the state update
transformation is shown in Figure 1. In each step the function f is applied to the state
variables Bi, Ci, and Di. The function f depends on the step number: steps 0 to 19 (round
1) use fIF and steps 40 to 59 (round 3) use fMAJ . fXOR is applied in the remaining steps
(round 2 and 4). The functions are defined as:

fIF (B, C,D) = B ∧ C ⊕ ¬B ∧D
fMAJ(B,C, D) = B ∧ C ⊕B ∧D ⊕ C ∧D
fXOR(B, C, D) = B ⊕ C ⊕D ,

(3)
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Figure 1: One step of the state update transformation of SHA and SHA-1

where ∧ denotes the logical AND operation, ⊕ corresponds to addition modulo 2, and ¬B is
the bitwise complement of B. The state update transformation also uses step constants Ki.

2.3 SHA-1

The only difference between SHA and SHA-1 [26] is a one-bit rotation in the message expan-
sion, namely (2) is replaced by:

Wi =
{

Mi, for 0 ≤ i ≤ 15,
(Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16) ≪ 1 for 16 ≤ i ≤ 79 .

(4)

2.4 SHA-224 and SHA-256

SHA-224 and SHA-256 [27] operate on chaining variables of 256 bits. Both hash functions
use the same compression function. The differences are the use of a different IV and the fact
that the output of SHA-224 is produced by truncating the final value of the 256-bit chaining
variable.

The message expansion takes as input a vector m with 16 words Mi and outputs 64 32-bit
words Wi, generated according to the following formula:

Wi =

{
Mi for 0 ≤ i < 15
σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16 for 15 ≤ i < 64

. (5)

The functions σ0(x) and σ1(x) are defined as follows:

σ0(x) = ROTR7(x)⊕ROTR18(x)⊕ SHR3(x)

σ1(x) = ROTR17(x)⊕ROTR19(x)⊕ SHR10(x) ,
(6)

where ROTRa denotes cyclic rotation by a positions to the right, and SHRa denotes a logical
shift by a positions to the right.
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Figure 2: One step of the state update transformation of SHA-224 and SHA-256.

The compression function consists of 64 identical steps. One step is depicted in Figure 2.
The step transformation employs the bitwise Boolean functions fMAJ and fIF , and two
GF(2)-linear functions Σ0(x) and Σ1(x):

Σ0(x) = ROTR2(x)⊕ROTR13(x)⊕ROTR22(x) (7)
Σ1(x) = ROTR6(x)⊕ROTR11(x)⊕ROTR25(x) . (8)

The i-th step uses a fixed constant Ki and the i-th word Wi of the expanded message.

2.5 RIPEMD-160

The hash function RIPEMD-160 was proposed by Hans Dobbertin, Antoon Bosselaers and
Bart Preneel [10]. It produces a 160-bit hash value. Like its predecessor RIPEMD, it consists
of two parallel streams. While RIPEMD consists of two parallel streams of MD4, the two
streams are designed differently in the case of RIPEMD-160.

The message expansion of RIPEMD-160 is a permutation of the 16 message words in each
round, where different permutations are used in each round of the left and the right stream.

In each stream 5 rounds of 16 steps each are used to update the 5 32-bit registers. Figure 3
shows one step transformation. The step transformation employs 5 bitwise Boolean functions
f1, . . . , f5 in each stream:

f1(B, C,D) = B ⊕ C ⊕D

f2(B, C,D) = (B ∧ C)⊕ (¬B ∧D)
f3(B, C,D) = (B ∨ ¬C)⊕D

f4(B, C,D) = (B ∧D)⊕ (C ∧ ¬D)
f5(B, C,D) = B ⊕ (C ∨ ¬D) ,

(9)
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Figure 3: One step of the state update transformation of RIPEMD-160.

where ∨ denotes the bitwise OR operation. The order of the Boolean function is different
in each stream. A step constant Ki is added in every step; the constant is different for each
round and for each stream. Different rotation values S are used in each step and in both
streams. After the last step, the initial value and the values of the right and the left stream
are combined (feed forward), resulting in the output of one iteration.

2.6 Reduced variants

When analyzing a hash function, cryptographers usually start by looking at variants of the
compression function, using a number of steps lower than specified by the designers. While
attacks against a very small number of steps say nothing about the strength of the full design,
it is commonly believed that attacks against only slightly reduced variants indicate problems
with the design.

When reading results on reduced variants, it should be kept in mind that the workload
of attacks usually increases exponentially in the number of steps. This implies that a hash
function for which there is an attack on a variant with only half the number of steps, is by
no means ‘half-broken’.

3 Recent Results

3.1 SHA

The first public analysis of a hash function similar to SHA-1, was the attack on SHA presented
by Chabaud and Joux at the CRYPTO 1998 conference in Santa Barbara (CA) [4]. The attack
used so-called perturbations and corrections, based on differential cryptanalysis. It had an
expected workload of 261. It was not implemented in practice, but since the expected workload
was below 280, which is the complexity of the square-root attack, this result constituted an
academical attack.



6

The results on SHA were subsequently improved. In 2004, Biham and Chen presented an
algorithm to produce near-collisions [2]. In 2005 Biham et al. presented optimizations to the
attack [3], but the main improvement came from Wang et al., who presented an attack with
a complexity of 239 operations [38]. In 2006, Naito et al. improved this even further to 236

operations [24].

3.2 SHA-1

Early 2005, Rijmen and Oswald presented an academical attack on SHA-1 reduced to 53
steps (instead of the 80 steps specified in the standard) [30]. In August 2005, Wang et al.
presented the first collision attack on full SHA-1, with an estimated complexity of 269 [37].
This attack was implemented on a reduced variant with only 58 out of 80 steps. For this
variant, the attack had a complexity of 233. Related results as well as an improved estimate
of the complexity of the attack were presented in [21, 28].

In October 2005, Wang presented a further improvement upon her original attack, reduc-
ing the estimated complexity of the attack to 263 [36].

In December 2006, De Cannière and Rechberger presented the best known collision ex-
ample to date: a colliding message pair for 64 out of 80 steps of SHA-1 [8]. The result was
made possible by generalizing differential cryptanalysis and by using an advanced searching
tool. The attack needs about 235 operations to find the colliding message pair. Estimating
the complexity of this attack when applied to the full SHA-1 is currently not possible.

3.3 SHA-224 and SHA-256

Several teams of researchers have applied the recently developed attack methods to reduced
or simplified variants of SHA-224 and SHA-256 [12, 14, 15, 19, 22]. These algorithms have
a much more complicated structure than SHA-1, both in the message expansion and in the
state update transformation, which makes the analysis tedious and involved.

The shift operations in the message expansion (6) severely limit the usefulness of the
perturbation-correction approach. It is still possible to find low-weight difference patterns
that may result in a collision, but the search space increases dramatically. The presence of
two nonlinear Boolean functions in the step update transformation is a very efficient means to
counter methods based on differential cryptanalysis. This implies again more work to perform
the analysis and to find the weakest spots in the algorithm.

Currently the best result is a method to find collisions for SHA-224 reduced to 19 out of
64 steps [22]. These collisions would also be near-collisions for SHA-256 reduced to 19 out of
64 steps. In the same article, a method to find pseudo-collisions is given, illustrated by an
example for SHA-256 reduced to 22 steps. Note, that the mentioned results do not imply any
weaknesses for SHA-224 and SHA-256 since the analysis has been performed for a very small
number of steps (cf. Section 2.6). Nevertheless, further research is required to make accurate
statements on the security margins of these hash functions.
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3.4 RIPEMD-160

Since the design of RIPEMD-160 is similar to the design of its predecessor RIPEMD, and
also MD5 and SHA-1, one could fear that it will succumb to the same attacks. However,
a recently published study indicates that RIPEMD-160 is not vulnerable to the recently
developed attacks [20].

RIPEMD-160 has a much more complicated structure than its predecessor RIPEMD,
which makes the analysis more difficult. Especially, the increased number of rounds and the
different design of the two streams make it much harder to find characteristics with high
probability in RIPEMD-160.

Currently the best result on RIPEMD-160 is an academical attack on a simplified variant
of the hash function, where the rotation of state variable C in the step function is removed
and where the number of steps is reduced from 80 to 48. However, this does not imply any
weaknesses for RIPEMD-160 since the analysis has been performed for a simplified variant
of the hash function. Nevertheless, further analysis is required to get a good view on the
security margins of RIPEMD-160.

3.5 Conclusions

We may expect that the first collision for SHA-1 will be found sometime between the summer
of 2007 and the end of 2008.

4 Impact of collisions on digital signatures

4.1 The attack

Digital signatures are currently the only technical process that can result in advanced elec-
tronic signatures. All currently known digital signature schemes use hash functions in order
to preprocess the input before the ‘raw’ signing primitive is applied.

A collision attack on a hash function can hence be used to mount attacks like the fol-
lowing. Firstly, the attacker constructs two messages x and y such that h(x) = h(y). A
digital signature on document x will now also be a correct signature for y and vice versa.
Subsequently, there are two scenarios:

Forgery: The attacker convinces the victim to sign message x. Then she can forge a signature
on y by simply copying the signature from the message x to the message y.

Repudiation: The attacker signs x and sends it to the victim. Later on, the attacker can
deny the signature on x by showing the colliding message y and claiming that she is the
victim of a forgery attack.

4.2 Limitations

It is important to realize that the attack only works if the attacker can control both messages
x and y. For existing signatures, one of the messages has already been fixed. Finding a
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suitable y for a given x is called a second preimage attack, which is believed to be much more
difficult than the collision attack. There are currently no second preimage attacks on the
hash functions of the SHA family and RIPEMD-160. This is a first limitation, which applies
to all collision attacks.

There are two more limitations, which follow from the particular way in which the current
attacks operate (differential cryptanalysis). Firstly, the difference between the two messages
influences the workload of the attack. In the basic form of the attack, the two messages x
and y have to differ in exactly two blocks at consecutive positions. Furthermore, the lowest
workload can be achieved only if the difference between the message blocks takes one specific
value or a very limited set of specific values. Secondly, the attack fixes large parts of the two
differing message blocks to ‘meaningless values.’ These limitations have sometimes led to the
false belief that the impact of the current results on practical applications is small.

4.3 Circumventing the limitations

Shortly after the first results on the collision attacks were published, it was already demon-
strated how to exploit them in highly redundant file formats like PostScript documents [7]
and executable files [16, 23, 33]. Basically, the constrained parts of the message can be hidden
in areas of high redundancy. In [18] Lenstra and de Weger explain how to produce forged
X.509 certificates (based on the hash function MD5) by crafting public keys that result in a
collision.

Stevens et al. improve on these results and present a method to produce what they call tar-
get collisions [35]. In brief, given arbitrary messages x and y, the method allows to construct
two message ‘tails’ s, t such that the concatenation of x and s collides with the concatenation
of y and t:

h(x‖s) = h(y‖t). (10)

They illustrate the improved method by presenting two X.509 certificates with different sub-
ject common name and different public key moduli. Roughly speaking, x and y contain
meaningful content and s and t are valid RSA public key moduli. For this example, they use
a tail of only 8 message blocks (4 kbyte).

Finally, the methods explained in [9] can be used to significantly reduce the number of
‘meaningless bits’ in the colliding messages.

4.4 Conclusion

Practical applications are endangered by collisions only if some additional constraints are
satisfied. These additional constraints increase the workload to construct exploitable colli-
sions. However, this increase in workload is getting smaller and the difference in workload
may quickly become insignificant.

Collisions will always remain less useful to attackers than second preimages. Collision
attacks don’t endanger the integrity of signatures existing prior to the development of the
attacks.
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5 Impact of collisions on HMAC

Hash functions are used in MAC (Message Authentication Code) constructions such as
HMAC [1]. This construction is provably secure under certain assumptions on the security of
the underlying hash function. It is therefore natural to wonder whether the recent collision
attacks on hash functions impact the security of HMAC based on these hash functions.

Recent work shows that HMAC constructions based on SHA or reduced variants of SHA-1
(61 out of 80 steps) have at least theoretical weaknesses [5, 17, 29]. For full HMAC-SHA-1
no weaknesses have been reported to date.

6 Possibility to continue the use of SHA-1

It is clear from the previous sections that collisions for SHA-1 will be found in the near future.
This will make SHA-1 unfit for use in the current methods to create advanced electronic
signatures. In this section, we first discuss a method that has been proposed recently and
that may allow the continued use of SHA-1 in the creation of advanced electronic signatures.
Next, we discuss other scenarios where SHA-1 still can be used. We conclude with a classical
argument against the further use of SHA-1.

6.1 Randomized hashing

In order to allow continued use of hash functions for which collision attacks have been demon-
strated, Halevi and Krawczyk propose a strengthened mode of operation for hash functions
[13]. By appending a (pseudo-)random value to the message right before the hashing oper-
ation is performed, the probability that an attacker can use a collision to create a forgery,
is greatly reduced. Halevi and Krawczyk argue that this strategy also restores the non-
repudiation property. Adapting an application to this new mode of operation seems however
more complicated than replacing the broken hash function, if a replacement hash function is
available.

6.2 When collisions don’t matter

Collisions are less of a concern in applications that don’t have the requirement to use advanced
electronic signatures. For instance, communication protocols like SSL can still use SHA-1 if
the legitimate parties trust one another.

Since the collision attack requires control of the document that will be signed electronically
(hashed), the party creating the document doesn’t need to worry about collision attacks.
Possible danger exists only for parties who:

1. sign a document created by or under control of another party, or

2. rely on a document created and signed by another party.

For example, assume an e-Government application where the citizens produce a document,
sign it electronically and submit the signed document to some authority. A collision attack
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would allow the citizens to deny having signed the document as received by the authority.
Hence, the risk is on the side of the authority.

6.3 Security margin arguments

Some researchers believe in a theory of graceful degradation of hash functions: hash functions
would evolve over time from ‘very secure’ to ‘completely insecure’ over several intermediate
stages. Under this assumption, a hash function for which collisions can be found, is more
likely to succumb to a second preimage attack in the near future.
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