Anhang F.1

zu den Nutzungsbedingungen im Verfahren betreffend Frequenzzuteilungen in den Frequenzbereichen 800 MHz, 900 MHz und 1800 MHz:

Vereinbarung 800 MHz Österreich - Deutschland, Liechtenstein und Schweiz

Vereinbarung

über die Frequenzplanung und Frequenznutzung in den Grenzregionen für terrestrische Systeme, die elektronische Kommunikationsdienste erbringen können

im Frequenzbereich 791 – 821 / 832 – 862 MHz

zwischen den Verwaltungen von Deutschland, Liechtenstein, Österreich und der Schweiz

Wien, 26. November 2010

revidiert Berlin, 05. September 2012

1 Zweck der Vereinbarung

Die Frequenzbereiche 791 – 821 / 832 – 862 MHz sind gewidmet für terrestrische Systeme, welche elektronische Kommunikationsdienste erbringen können,

- für Deutschland, Liechtenstein und Österreich: gemäß Beschluss der Kommission vom 6. Mai 2010 über harmonisierte technische Bedingungen für die Nutzung des Frequenzbands 790–862 MHz für terrestrische Systeme, die elektronische Kommunikationsdienste in der Europäischen Union erbringen können. Dies gilt auch für Liechtenstein als Mitglied des EWR.
- für die Schweiz: gemäß dem vom Bundesrat genehmigten Nationalen Freguenznutzungsplan.

2 Prinzipien der Frequenzplanung und der Frequenznutzung in den Grenzgebieten

Die Verwaltungen von Deutschland, Liechtenstein, Österreich und der Schweiz sind folgenden Prozeduren betreffend der Frequenzplanung über die Frequenznutzung übereingekommen, die auf dem Konzept der gleichberechtigten Zugangswahrscheinlichkeit basieren. Dies erlaubt eine gleichwertige grenznahe Versorgung geographisch benachbarter Gebiete durch zwei oder mehr Funknetze gleicher oder unterschiedlicher digitaler Übertragungstechnologien, die dasselbe Frequenzband ohne Koordinierung nutzen. Der Betrieb von Basisstationen in Grenznähe mit höheren Feldstärkewerten als in dieser Vereinbarung festgelegt, wie z.B. durch traditionelle Koordinierungsverfahren, würde das Gleichgewicht der Funknutzung in diesen Gebieten stören und ist deshalb nicht vorgesehen.

Die folgenden Prinzipien sind für die Frequenznutzung durch die oben erwähnten Systeme in geographisch benachbarten Gebieten, in denen die betroffenen Verwaltungen das Konzept der gleichberechtigten Zugangswahrscheinlichkeit anwenden, festgelegt:

- Die Feldstärkewerte sind innerhalb eines Referenzblocks von 5 MHz definiert.
- Die Berechnung der Feldstärke hat die Summe aller Aussendungen des jeweiligen Antennensektors zu enthalten, welche in diesen Referenzblock fallen. Das Feldstärkelimit für jede Aussendung gilt für jeden einzelnen Antennensektor und darf um einen Faktor reduziert werden, der den Anteil an dem entsprechenden Referenzblock darstellt (Reduktionsfaktor = 10 x log (Frequenzblockanteil / 5 MHz)).

Damit eine gleichwertige Versorgung und die gleichberechtigte Zugangswahrscheinlichkeit zum Spektrum sowie eine effiziente Frequenznutzung in den Grenzregionen auch mit verschiedenen Übertragungstechnologien sichergestellt werden kann, müssen die in Kapitel 3 genannten Prinzipien und Feldstärkewerte von allen in Frage kommenden Betreibern eingehalten werden.

3 Technische Bedingungen

Für FDD-Systeme:

Der Duplexabstand beträgt 41 MHz, wobei die Endgeräte (uplink) im Frequenzbereich 832 – 862 MHz und die Basisstationen (downlink) im Frequenzbereich 791 – 821 MHz senden.

Basisstationen dürfen einen Feldstärkewert von 59 dB μ V/m in einer Referenzbandbreite von 5 MHz in 3 m über Grund auf der Grenzlinie und von 41 dB μ V/m in einer Referenzbandbreite von 5 MHz in 3 m über Grund auf der 6 km-Linie hinter der Grenze nicht überschreiten.

Für TDD-Systeme:

Basisstationen dürfen einen Feldstärkewert von 15 dBµV/m in einer Referenzbandbreite von 5 MHz in 3 m über Grund auf der Grenzline nicht überschreiten.

4 Betreiberabsprachen

Um die Verträglichkeit der oben genannten Systeme in den Grenzregionen zu verbessern, können die Betreiber zusätzliche Absprachen treffen, wie z.B.:

- Vorzugsfrequenzaufteilung
 - Vorzugsaufteilung von Code- bzw. Identifikationsparameter Ressourcen nach den entsprechenden Annexe von ECC/REC/(11)04
- Definition von Trägerfrequenzen (z.B. bei LTE)
- Synchronisation der betroffenen Netze

Diese Betreiberabsprachen

- dürfen nicht zu Lasten Dritter abschlossen werden,
- dürfen die in dieser Vereinbarung festgeschriebenen Feldstärkewerte nicht überschreiten, und
- benötigen die vorherige Zustimmung aller betroffenen Verwaltungen.

5 Methode zur Bestimmung der Feldstärke

Zur Berechung der Feldstärke soll das HCM-Programm angewendet werden. Die Zeitwahrscheinlichkeit für alle Berechnungen beträgt 10%.

6 Änderung der Vereinbarung

Diese Vereinbarung kann auf Verlangen einer Signatarverwaltung mit Zustimmung der übrigen Verwaltungen geändert werden, wenn administrative oder technische Entwicklungen eine solche Änderung notwendig machen.

Diese Vereinbarung kann im Lichte der praktischen Erfahrungen in Bezug auf deren Anwendung sowie den Betrieb der oben genannten Systeme, entsprechend angepasst werden.

7 Kündigung der Vereinbarung

Jede Verwaltung kann diese Vereinbarung mit einer Frist von 6 Monaten kündigen.

8 Sprache der Vereinbarung

Diese Vereinbarung wurde in deutscher Sprache abgeschlossen. Diese Vereinbarung wurde zusätzlich als Vorlage für Vereinbarungen mit weiteren Verwaltungen in englischer Sprache abgefasst. Die englische Version ist als Anlage 1 angeschlossen.

Jeder Verwaltung wird ein Original der Vereinbarung ausgehändigt. Der geschäftsführenden Verwaltung der HCM-Vereinbarung wird eine Kopie übermittelt.

9 Datum des Inkrafttretens

Diese Vereinbarung tritt am Tag der Unterzeichnung in Kraft.

Geschehen zu Berlin, 05. September 2012

Bundesnetzagentur (DEUTSCHLAND) (H. Hönnekes)

Is 129

Amt für Kommunikation (LIECHTENSTEIN) (K. Bühler)

L. Mill

Bundesministerium für Verkehr, Innovation und Technologie (ÖSTERREICH)

(F. Cziczatka)

CA FC

Bundesamt für Kommunikation (SCHWEIZ) (K. Vonlanthen)

K. Vala he

Anhang F.2

zu den Nutzungsbedingungen im Verfahren betreffend Frequenzzuteilungen in den Frequenzbereichen 800 MHz, 900 MHz und 1800 MHz:

Vereinbarung 800 MHz Österreich - Slowakei, Ungarn, Slowenien und Kroatien

TECHNICAL ARRANGEMENT

BETWEEN THE NATIONAL FREQUENCY MANAGEMENT
AUTHORITIES OF

AUSTRIA, CROATIA, [THE CZECH REPUBLIC,] HUNGARY, THE SLOVAK REPUBLIC and SLOVENIA

ON BORDER COORDINATION

FOR TERRESTRIAL SYSTEMS CAPABLE OF PROVIDING ELECTRONIC COMMUNICATIONS SERVICES

IN THE FREQUENCY BAND 790 - 862 MHz

Vienna, 12th October 2011

1 INTRODUCTION

The aim of this Technical Arrangement is to lay down the principles, the technical provisions and administrative procedure necessary to regulate the common deployment of terrestrial systems capable of providing electronic communications services that may use different technologies in the band 790 - 862 MHz in border areas. This frequency band is called as WRC-07 "Digital Dividend".

In the framework of Article 6 of ITU Radio Regulations, of bi- or multilateral agreements, arrangements or protocols dealing with frequency coordination in general (e.g. the "HCM Agreement"), the Croatian Post and Electronic Communications Agency (Croatia), [Czech Telecommunication Office (the Czech Republic),] the Federal Ministry for Transport, Innovation and Technology (Austria), the National Media and Infocommunications Authority (Hungary), the Post and Electronic Communications Agency of the Republic of Slovenia (Slovenia) and the Telecommunications Regulatory Authority of the Slovak Republic (the Slovak Republic) (hereinafter called Signatory Authorities) concluded this Technical Arrangement concerning the usage of the frequencies for terrestrial systems capable of providing electronic communications services in the band 790 - 862 MHz in border areas.

The Signatory Authorities have agreed on the following coordination procedures and rules detailed in the sections below in border areas.

2 PRINCIPLES OF FREQUENCY PLANNING AND FREQUENCY USAGE IN BORDER AREAS

2.1 Relevant regulations

From regulatory point of view, the following deliverables play an important role in the regulation of border coordination in the band 790 - 862 MHz:

- COMMISSION DECISION (2010/267/EU) of 6 May 2010 on
 - harmonised technical conditions of use in the 790 862 MHz frequency band for terrestrial systems capable of providing electronic communications services in the European Union (notified under document number C(2010) 2923);
- ECC Decision (ECC/DEC/(09)03) of 30 October 2009 on harmonised conditions for mobile/fixed communications networks (MFCN) operating in the band 790 – 862 MHz;

 ECC RECOMMENDATION (ECC/REC/(11)04) adopted on 20 May 2011 on frequency planning and frequency coordination for terrestrial systems for mobile/fixed communication networks (MFCN) capable of providing electronic communications services in the frequency band 790 – 862 MHz.

CEPT REPORT 29 of 26 June 2009 on

technical considerations regarding harmonisation options for the digital dividend in the European Union. Guideline on cross border coordination issues between mobile services in one country and broadcasting services in another country.

2.2 Access to the frequency spectrum in general

One of the most important aims of this Technical Arrangement is to give simple procedure and rules so that networks in border areas may be deployed easily, ensuring proper access to the frequency spectrum. From this point of view, the coordination principle applied in this Technical Arrangement is that each country concerned has the same access to the frequency spectrum, i.e. they may use all the frequencies in the bands 791 – 821 and 832 - 862 MHz.

To apply the principle outlined above, the same interference field strength level is allowed for a home network and its opposite network in the neighbouring country, ensuring a more or less equitable access to the frequency spectrum for the operators in the neighbouring countries.

As a consequence of the above, traditional frequency coordination would disturb this delicate balance in the border area. Therefore, traditional frequency coordination will not be performed according to this Technical Arrangement.

Nevertheless, this kind of frequency usage in the border area is rather delicate and only viable if the field strength triggers given in this Technical Arrangement are kept and calculated using accurate radio wave propagation methods, and in addition, radio parameters of the systems are coordinated between neighbouring operators.

2.3 Radio wave propagation

Achieving equitable access to the frequency spectrum rather depends upon the radio wave propagation method applied to calculate the field strength since that method serves as a tool for enforcing the rules of this Technical Arrangement.

2.3.1 Calculation for planning and effectuation

For the field strength calculations the method of the HCM Agreement shall be applied. Time probability for electronic communications services is 10% and for analogue/digital TV systems 1%.

2.3.2 Calculations in the case of reported interference

As for interference field strength prediction the following three methods have been mentioned in the relevant frequency coordination Recommendation ECC/REC/(11)04:

- site general model with line calculations (hereinafter called "site general method");
- path specific model with radial calculations from base stations (hereinafter called "radial calculations");
- area calculations with a path specific model (hereinafter called "area calculations").

Using a site general method (like "HCM" Agreement") for the assessment of interference cannot ensure proper protection against harmful interference for several cases and results in less efficiency in frequency usage in border areas.

Radial calculations can only give better result than site general methods if steps along paths are small enough and the number of radial directions is high enough. Still, there may be some cases causing harmful interference.

Area calculations, especially alongside using clutter data, can eliminate the mistakes of both site general methods and radial calculations and, in addition, important geographic areas can also be protected. Therefore, area calculations are preferable in the case where it is necessary to evaluate interference in detail. Thus, operators are expected to apply area calculations based on commonly agreed wave propagation model, trigger values and method used for evaluation of interference to protect their networks or a special part of the border area and to enhance spectrum efficiency in border areas.

2.4 Coordination procedure

In general, neither coordination nor notification of stations is required except in cases of harmful interference.

Operators may diverge from the regulation given in this Technical Arrangement subject to the so-called "Operator Arrangement" (see section 7.).

3 GENERAL TECHNICAL PROVISIONS

In this section the general technical provisions are given while section 4 details the additional technical provisions for the values of interference field strength that shall be kept in border areas.

In the bands 791 – 821 and 832 - 862 MHz only FDD systems may be used according to the preferred harmonised frequency arrangement.

According to ECC Decision ECC/DEC/(09)03 the preferred harmonised frequency arrangement shall be as follows:

"a"	790 – 791 MHz	guard band between broadcasting band edge at 790
		MHz and the lower edge of FDD downlink band " $m{b''}$
" <i>b"</i>	791 – 821 MHz	downlink band of the paired band ${f "b"}$ and ${f "d"}$
"c"	821 - 832 MHz	guard band between the upper edge of FDD downlink
		band " ${m b}''$ and the lower edge of FDD uplink band " ${m d}''$
"d"	832 – 862 MHz	uplink band of the paired band ${f "b"}$ and ${f "d"}$

The assigned blocks shall be in multiple of 5.0 MHz with the first lower block edge starting at the frequency of 791 MHz.

The bands "b" and "d" as a paired band may be used for FDD systems. The duplex spacing for FDD operation shall be 41 MHz with terminal station transmission in the uplink band and base station transmission in the downlink band.

Guard bands may not be used in the preferred harmonised frequency arrangement.

Parameters of mobile and base stations such as power shall comply with the requirements given in COMMISSION DECISION (2010/267/EU) of 6 May 2010.

In the case of IMT/LTE it is required to share the preferential physical-layer cell identities (PCI) according to ECC Recommendation ECC/REC/(11)04. The allocation of codes is given in Annex 1 to this Technical Arrangement.

In addition, it is also desirable for the operators to coordinate radio parameters of their systems to minimise the deteriorating effects of uplink interference in line with the above-mentioned Recommendation.

4 TECHNICAL PROVISIONS RELATED TO FIELD STRENGTH TRIGGERS

4.1 Basic rules

Field strength values or triggers given in section 4.2 refer to a reference frequency block of 5 MHz. The field strength triggers shall be modified according to the value of the bandwidth and the aggregated power correction factor given below. The modified field strength triggers shall be applied to each individual base station.

a) Bandwidth correction factor

If the nominal channel spacing of a system is not equal to 5 MHz, the value of the bandwidth correction factor according to the following equation shall be added to the field strength triggers given in section 4.2:

$$10 * log (Cs/5 MHz)$$
 (dB)

where

"Cs" nominal channel spacing (MHz).

b) Aggregated power correction factor

If there is more than one transmission in a respective reference frequency block, the field strength triggers shall be decreased by the value of the aggregated power correction factor according to the following equation in each antenna sector.

$$10 * log n$$
 (dB)

where

"n" the number of the transmitters or transmissions in the respective antenna sectors

If a transmission with nominal channel spacing falls into a respective reference frequency block (even if partly), it shall be included in the value of "n".

4.2 Frequency utilisation in the paired band "b" and "d"

4.2.1 General case

This is the case where it is not necessary to examine what technology is used in the neighbouring country.

Base stations of FDD systems may be operated in the paired band "b" and "d" if the produced mean field strength at a height of 3 m above ground does not exceed the value of 55 dB $_{\mu}$ V/m/5MHz at the borderline, and does not exceed the value of 29 dB $_{\mu}$ V/m/5MHz at a line of 9 km beyond the border at a height of 3 m above ground.

4.2.2 LTE deployment

In the case where the technology LTE is deployed on both sides of the borderline, the field strength level may be increased to 59 dB $_{\mu}$ V/m/5MHz at the borderline and 41 dB $_{\mu}$ V/m/5MHz at the 6 km line according to Annex 1 to ECC/REC/(11)04. These field strength triggers may only be applied, if a Simplified Operator Arrangement has been concluded for this regulation by the operators concerned (see section 7.2).

5 PROTECTION OF DIGITAL AND ANALOGUE TV SYSTEMS

In the frequency bands 791 –862 MHz, analogue and digital television transmitters are still operated in some countries. Border sections and field strength thresholds required to protect the reception of these TV signals are given in Annex 2. These field strength limits are to be kept in the respective border sections in addition to the values specified in section 4.2. The field strength threshold values are taken from the CEPT Report 29 and correspond to the following table:

Coordination trigger field strength for the protection of the Broadcasting Service at 10m					
Protection of the analogue TV 22 dBµV/m/8 MHz at the border					
Protection of the digital TV 25 dBµV/m/8 MHz at the border					

For the field strength calculations the method of the HCM Agreement shall be applied. Time probability in all calculations is $1\,\%$.

6 HARMFUL INTERFERENCE

This section deals with harmful interference between terrestrial systems capable of providing electronic communications services and does not deal with interference in connection with services under section 5.

Concerning interference calculations a two-step procedure is described below and based upon interference calculations operators shall adjust the characteristics of base stations.

As the first step, in the case of harmful interference, the characteristics of base stations shall be adjusted based upon interference calculations laid down in section 6.1. If the first step does not result in interference-free operation, the second step shall be taken.

As the second step, in the case of harmful interference, the characteristics of base stations shall be adjusted based upon interference calculations laid down in section 6.2. If the second step does not result in interference-free operation, the measurements based on the method of area calculation shall be carried out.

6.1 Step 1: Line calculations

If harmful interference occurs, field strength line calculations shall be carried out between the base stations and the points of the borderline/6 km line/9 km line regarding trigger values in section 4.2, and depending on radio wave propagation paths the HCM model shall be used. Time probability in all calculations is 10 %.

6.2 Step 2: Area calculations

Operators are required to apply area calculations based on commonly agreed wave propagation models, commonly agreed trigger values and commonly agreed method used for evaluation of interference when interference is still experienced after step 1, according to section "Area calculations" of Annex 3 to ECC Recommendation ECC/REC/(11)04 before measuring the interference field strength.

Area calculations including its elements detailed in the previous paragraph shall at this time be agreed by the Operators concerned.

7 OPERATOR ARRANGEMENTS

7.1 Operator Arrangements in general

To further improve the compatibility of terrestrial systems capable of providing electronic communications services, and to enhance the efficient use of frequency spectrum and coverage in border areas, operators may conclude so-called additional "Operator Arrangements", using e.g.:

- preferential code division arrangements (e.g. according to ERC/REC(01)01);
- frequency carrier definitions (e.g. with LTE);

Such Operator Arrangements are subject to prior consent of the Signatory Authorities concerned.

7.2 Simplified Operator Arrangements

In the case detailed below, operators may conclude special Operator Arrangements called "Simplified Operator Arrangements" to enhance the efficient use of the frequency spectrum and the coverage, and also to speed up the coordination procedure. This means that certain deviations from this Technical Arrangement are permitted with subsequent notification and consent of the Signatory Authorities concerned.

In general, Simplified Operator Arrangements may only be concluded for

- a) a common frequency band or sub-band that has been allocated to all the operators concerned.
- b) certain border areas determined by the operators concerned.

It is required to get the consent of all the operators concerned in the given border areas.

The issue for which Simplified Operator Arrangements may only be concluded is the following:

• Increased field strength level at the borderline for FDD LTE systems according to section 4.2.2.

The Simplified Operator Arrangement shall contain the common frequency bands and the border areas affected where the higher trigger values will be applied, and shall be forwarded to the administrations concerned within one month.

8 ADMINISTRATIVE PROCEDURE

Neither coordination nor notification of stations is required, in general. However, in the case of harmful interference, the data necessary to evaluate and treat the harmful interference shall be exchanged between Signatory Authorities concerned.

The information about bringing the frequency bands into use by the operators can be seen in EFIS (www.efis.dk, according to ECC/DEC/(01)03).

Operators concerned may agree to deviate from the principles, the technical provisions and administrative procedure etc. given in this Technical Arrangement by mutual consent in an "Operator Arrangement".

The "Operator Arrangement" should be based on the relevant deliverables and shall be agreed by the Signatory Authorities of relevant countries.

9 REVISION OF THE TECHNICAL ARRANGEMENT

With the consent of the other Signatory Authorities, this Technical Arrangement may be reviewed or modified at the request of one or more Signatory Authorities where such modifications become necessary in the light of administrative, regulatory or technical developments, or if practical experience or the operation of terrestrial systems capable of providing electronic communications services require.

10 WITHDRAWAL FROM THE ARRANGEMENT

Any Authority may withdraw from this Technical Arrangement by the end of a calendar month by giving notice of its intention at least six months in advance. A declaration to that effect shall be addressed to all other Signatory Authorities.

11 LANGUAGE OF THE ARRANGEMENT

This Technical Arrangement has been concluded in English.

One original version of this Technical Arrangement is handed over to each Signatory Authorities and a copy is submitted to the Managing Administration of the HCM Agreement.

12 DATE OF ENTRY INTO FORCE

This Technical Arrangement will enter into force on 12th October 2011.

Done at Vienna, 12 th October 2011.	
For Austria (Franz Ziegelwanger)	
For Croatia (Ivančica Sakal)	
[For the Czech Republic]	
For Hungary (Dr. Gábor Kolláth)	
For the Slovak Republic (Milan Mizera)	
For Slovenia (Martin Očko)	

Annex 1

PREFERENTIAL PHYSICAL-LAYER CELL IDENTITIES (PCI) FOR IMT-2000/LTE

PCI co-ordination is only needed when channel centre frequencies are aligned independent of the channel bandwidth.

3GPP TS 36.211 defines 168 "unique physical-layer cell-identity groups" in §6.11, numbered 0...167, hereafter called "PCI groups". Within each PCI group there are three separate PCIs giving 504 PCIs in total.

Administrations should agree on a repartition of these 504 PCI on an equitable basis when channel centre frequencies are aligned as shown in the Table below. It has to be noted that dividing the PCI groups or PCI's is equivalent. Each country can use all PCI groups away from the border areas.

As shown in the table below, the PCI's should be divided into 6 sub-sets containing each one sixth of the available PCI's. Each country is allocated three sets (half of the PCI's) in a bilateral case, and two sets (one third of the PCI's) in a trilateral case.

Four types of countries are defined in a way such that no country will use the same code set as any one of its neighbours. The following lists describe the distribution of European countries:

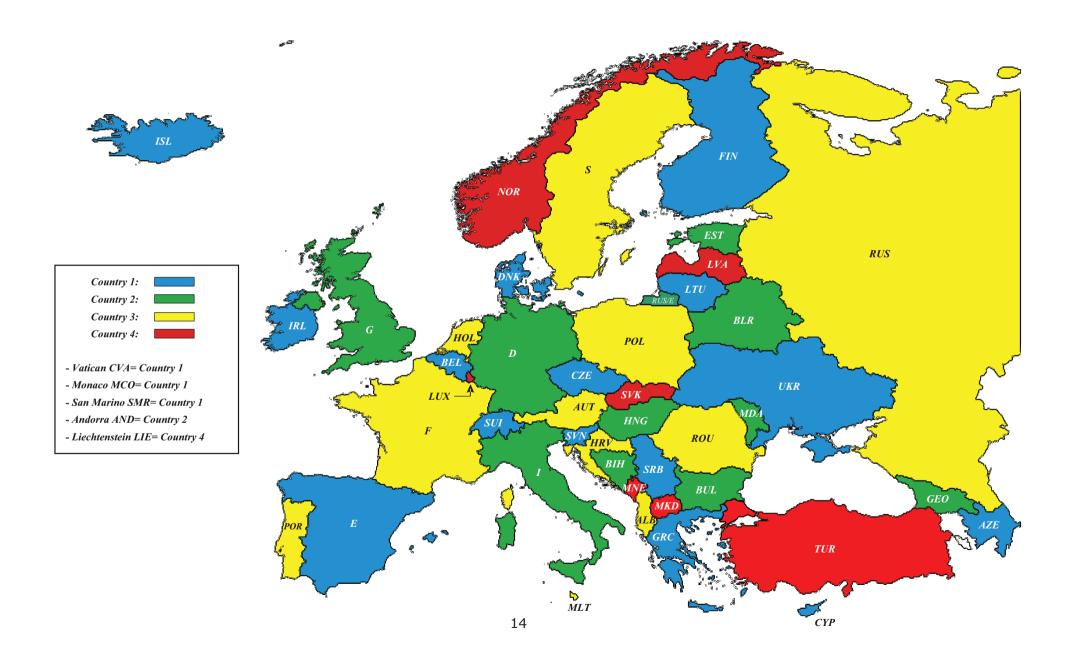
Type country 1: BEL, CVA, CYP, CZE, DNK, E, FIN, GRC, IRL, ISL, LTU, MCO, SMR, SUI, SVN, UKR, AZE, SRB.

Type country 2: AND, BIH, BLR, BUL, D, EST, G, HNG, I, MDA, RUS (Exclave), GEO

Type country 3: ALB, AUT, F, HOL, HRV, POL, POR, ROU, RUS, S, MLT

Type country 4:LIE, LUX, LVA, MKD, MNE, NOR, SVK, TUR.

For each type of country, the following tables and figure describe the sharing of the PCI's with its neighbouring countries, with the following conventions of writing:


Preferential PCI non-preferential PCI

The 504 physical-layer cell-identities should be divided into the following 6 sub-sets when the carrier frequencies are aligned in border areas:

PCI	Set	Set B	Set C	Set D	Set E	Set F	PCI	Set A	Set B	Set C	Set D	Set E	Set F
	Α												
Country 1	083	84167	168251	252335	336419	420503	Country 2	083	84167	168251	252335	33641	420503
Border 1-2							Border 2-1						
Zone 1-2-3							Zone 2-3-1						
Border 1-3							Border 2-3						
Zone 1-2-4							Zone 2-1-4			<u> </u>			
Border 1-4							Border 2-4						
Zone 1-3-4							Zone 2-3-4						
			-			•		•	•				•
PCI	Set A	Set B	Set C	Set D	Set E	Set F	PCI	Set A	Set B	Set C	Set D	Set E	Set F
Country 3	083	84167	168251	252335	336419	420503	Country 4	083	84167	168251	252335	33641	420503
Border 3-2							Border 4-1						
Zone 3-1-2							Zone 4-1-2						
Border 3-1							Border 4-2						
Zone 3-1-4							Zone 4-2-3						
Border 3-4							Border 4-3						
Zone 3-2-4							Zone 4-3-1						

Notes

- 1) All PCI's are available in areas away from the border.
- 2) In certain specific cases (e.g. AUT/HRV) where the distance between two countries of the same type number is very small (< few 10s km), it may be necessary to address the situation in bi/multilateral coordination agreements as necessary, and may include further subdivision of the allocated codes in certain areas.

Annex 2For the Protection of the Reception of TV Transmitters according to section 5

Name of TV Chatian	Frequen	icy Area	Border Area t	o be Protected	Digital/An alogue	Trigger Field Strength	To Protect until Date
Name of TV-Station or Name of Allotment	from MHz	up to MHz	from Longitude Latitude	up to Longitude Latitude		at the Border in dBµV/m at h=10 m	(max. until 17.6.2015)
HNG - Allotment VESGYO	790	798	016E31 10 47N0019	017E54 41. 47N44 56	Digital	25	31.12.2014
HNG – Allotment PESNOG	798	806	018E50 06 47N50 15	019E50 12 48N09 44	Digital	25	31.12.2014
HNG – Allotment KOMFEJ	806	814	017E55 29 47N44 57	018E50 29 47N50 31	Digital	25	31.12.2014
HNG – Allotment TOKAGG	806	814	020E20 22 48N17 16	022E08 31 48N24 36	Digital	25	31.12.2014
HNG - Allotment VESKOM	814	822	017E55 04 47N45 12	018E50 29 47N50 48	Digital	25	31.12.2014
HNG – Allotment ZALSOM	822	830	016E23 41 46N37 53	017E33 44 45N56 04	Digital	25	31.12.2014
HNG – Allotment BARTOL	838	846	017E33 00 45N56 24	018 51 00 45N54 36	Digital	25	31.12.2014
HNG – Allotment TOKAGG	846	854	020E20 22 48N17 16	022E08 31 48N24 36	Digital	25	31.12.2014
HNG – Allotment SOPVAS	846	854	016E23 30 46N38 11	017E04 06 47N44 22	Digital	25	31.12.2014
HNG – Allotment KISCSA	846	854	018E51 00 45N54 36	019E43 07 46N10 38	Digital	25	31.12.2014

HNG – Allotment	854	862	020E20 24	019E49 48	Digital	25	31.12.2014
HEV			48N17 24	48N09 36			
HNG – Allotment	846	854	018E 51 00	018E 51 00	Digital	25	31.12.2014
KISCSA			45N54 36	45N54 36			
AUT – Assignment	822	830	015E41 38	016E40 47	Digital	25	31.10.2013
WIEN 1			48N51 28	47N33 31			
SVN – Allotment	838	846	016E06 38	014E36 11	Digital	25	17.6.2015
VZHOD			46N52 10	46N26 25			
SVN – Allotment	814	822	014E36 17	013E43 04	Digital	25	17.6.2015
CENTER			46N26 17	46N31 29			
SVK – Allotment	830	838	017E 23 36	017E 46 20	Digital	25	31.12.2013
BL-07			48N 48 51	47N 45 11			
SVK – Allotment	814	822	020E 48 42	021E 27 21	Digital	25	31.12.2013
KE-07			48N 34 36	48N 34 12			
SVK – Allotment	814	822	021E 27 21	018E 51 03	Digital	25	31.12.2013
MI-07			48N 34 12	49N 31 03			
SVK – Allotment	790	798	019E 49 32	020E 48 42	Digital	25	31.12.2013
RS-07			48N 09 48	48N 34 36			
SVK – Allotment	854	862	018E 06 49	017E 23 36	Digital	25	31.12.2013
TN-02			49N 05 22	48N 48 51			
SVK – Allotment	782	790	018E 53 40	019E 49 32	Digital	25	31.12.2013
VK-01			48N 03 21	48N 09 48			
SVK – Allotment	838	846	018E 53 40	019E 49 32	Digital	25	31.12.2013
VK-06			48N 03 21	48N 09 48			
SVK – Allotment	822	830	018E 53 40	019E 49 32	Digital	25	31.12.2013
VK-07			48N 03 21	48N 09 48			
SVK – Allotment	790	798	018E 51 03	018E 06 49	Digital	25	31.12.2013
ZA-04			49N 31 03	49N 05 22			
SVK – Allotment	846	854	018E 51 03	018E 06 49	Digital	25	31.12.2013
ZA-07			49N 31 03	49N 05 22			

Anhang F.3

zu den Nutzungsbedingungen im Verfahren betreffend Frequenzzuteilungen in den Frequenzbereichen 800 MHz, 900 MHz und 1800 MHz:

Vereinbarung 800 MHz Österreich - Tschechien

Innovation und Telekommunikation

AGREEMENT

BETWEEN THE ADMINISTRATIONS OF AUSTRIA and THE CZECH REPUBLIC

ON FREQUENCY PLANNING AND FREQUENCY
USAGE AT BORDER AREAS FOR
TERRESTRIAL SYSTEMS CAPABLE OF
PROVIDING ELECTRONIC COMMUNICATIONS
SERVICES

IN THE FREQUENCY BANDS 791 - 821 MHz and 832 - 862 MHz

Geneva, 13ktebroary 2012

Innovation und Telekommunikation

1 - INTRODUCTION

The frequency bands 791 - 821 MHz and 832 - 862 MHz are designated for terrestrial systems capable of providing electronic communications services according to

 COMMISSION DECISION (2010/267/EC) of 6th May 2010 on harmonised technical conditions of use in the 790-862 MHz frequency band for terrestrial systems capable of providing electronic communications services in the European Union (notified under document C(2010) 2923).

2 - PRINCIPLES OF FREQUENCY PLANNING AND FREQUENCY USAGE AT BORDER AREAS

The administrations of Austria and the Czech Republic have agreed on the following frequency planning and frequency usage procedures based on the concept of equal access probability. This concept enables equitable coverage for two or more networks using the same frequency band with the same or different digital technologies in geographically adjacent areas without coordination. Operation of stations in the respective border area exceeding the specified field strength values after performing traditional frequency coordination would disturb the balance in the respective area and is therefore not desirable.

The following principles apply to frequency utilisation by terrestrial systems capable of providing electronic communications services in geographically adjacent areas in cases where concerned administrations agree to use the concept of equal access probability:

- Field strength values are defined inside a reference frequency block of 5 MHz.
- The field strength calculations shall take into account the sum of all signals radiated from the respective antenna sector within the reference frequency block. The respective field strength values for each signal should be applied by each antenna sector and can be deduced by reducing the limit proportionally to the bandwidth portions falling into the reference frequency block (reduction factor = 10 x log (bandwidth portion / 5 MHz)).

In order to assure equitable coverage and equal access probability to the spectrum in border areas even with different transmission technologies, and to enhance the efficiency of spectrum usage, the principles and field strength limits as given in chapter 3 of this agreement shall be respected by all network operators concerned.

Innovation und Telekommunikation

3 - TECHNICAL CHARACTERISTICS

These frequency bands are parts of the "Digital Dividend".

The mode of operation shall be frequency division duplex (FDD) with the following arrangements: The duplex spacing shall be 41 MHz with base station transmission (down link) located in the lower part of the band starting at 791 MHz and finishing at 821 MHz and terminal station transmission (up link) located in the upper part of the band starting at 832 MHz and finishing at 862 MHz.

Base stations may be operated if the produced field strength at a height of 3 m above ground does not exceed the value of 55 dB $_{\mu}$ V/m in the reference bandwidth of 5 MHz at the border line, and does not exceed the value of 29 dB $_{\mu}$ V/m in the reference bandwidth of 5 MHz at a line of 9 km beyond the border.

4 - OPERATOR ARRANGEMENTS

To further improve the compatibility of terrestrial systems capable of providing electronic communications services in border areas, operators may conclude additional arrangements such as:

- preferential frequency distribution arrangements
- preferential code division arrangements (e.g. according to ERC/REC(01)01)
- frequency carrier definitions (e.g. according to ECC/REC/(11)04)
- synchronisation of concerned networks

Such operator arrangements

- shall only be valid as long as all participating operators hold exclusive rights for concerned frequencies
- shall not impose disadvantages on other operators
- should respect field strength levels and provisions given by relevant documents (e.g. ECC recommendations)
- · are subject to prior consent of the administrations concerned

5 - FIELD STRENGHT PREDICTION

For the field strength calculations the tool of the HCM Agreement shall be applied. Time probability in all calculations is 10 %.

Innovation und Telekommunikation

6 - REVISION OF THE AGREEMENT

With the consent of the other administrations, this agreement may be modified at the request of one of the signatory administrations where such a modification becomes necessary in the light of administrative, regulatory or technical developments.

The technical characteristics may be reviewed in the light of practical experience of its application and of the operation of terrestrial systems capable of providing electronic communications services in general.

7 - WITHDRAWAL FROM THE AGREEMENT

Any administration may withdraw from this Agreement subject to six months notice.

8 - LANGUAGE OF THE AGREEMENT

This agreement has been concluded in English.

One original version of this agreement is handed over to each Signatory Administration and a copy is submitted to the managing administration of the HCM Agreement.

9 - DATE OF ENTRY INTO FORCE

The date of entry into force is the date of signature.

For Austria

For the Czech Republic

Anhang F.4

zu den Nutzungsbedingungen im Verfahren betreffend Frequenzzuteilungen in den Frequenzbereichen 800 MHz, 900 MHz und 1800 MHz:

Beschluss der Kommission vom 6. Mai 2010 (Nr. 2010/267/EU)

BESCHLUSS DER KOMMISSION

vom 6. Mai 2010

über harmonisierte technische Bedingungen für die Nutzung des Frequenzbands 790-862 MHz für terrestrische Systeme, die elektronische Kommunikationsdienste in der Europäischen Union erbringen können

(Bekannt gegeben unter Aktenzeichen K(2010) 2923)

(Text von Bedeutung für den EWR)

(2010/267/EU)

DIE EUROPÄISCHE KOMMISSION —

gestützt auf den Vertrag über die Arbeitsweise der Europäischen

gestützt auf die Entscheidung Nr. 676/2002/EG des Europäischen Parlaments und des Rates vom 7. März 2002 über einen Rechtsrahmen für die Funkfrequenzpolitik in der Europäischen Gemeinschaft (Frequenzentscheidung) (1), insbesondere auf Artikel 4 Absatz 3,

in Erwägung nachstehender Gründe:

- In der Mitteilung der Kommission "Ummünzung der di-(1) gitalen Dividende in sozialen Nutzen und wirtschaftliches Wachstum" (2) wurde auf die Bedeutung einer einheitlichen Öffnung des Teilbands 790-862 MHz (nachstehend "800-MHz-Band") für elektronische Kommunikationsdienste durch Aufstellung harmonisierter technischer Nutzungsbedingungen hingewiesen. Das 800-MHz-Band ist Teil der digitalen Dividende, d. h. der Funkfrequenzen, die durch eine effizientere Frequenznutzung infolge der Umstellung von analogem auf digitales terrestrisches Fernsehen verfügbar geworden sind. Bei der Ermittlung der sozioökonomischen Vorteile wurde von einem Gemeinschaftskonzept ausgegangen, nach dem das 800-MHz-Band bis 2015 freigegeben wird und technische Bedingungen zur Unterdrückung grenzübergreifender Interferenzen durch hohe Leistungen festgelegt werden.
- Technologieneutralität und Dienstneutralität sind in der (2)Richtlinie 2009/140/EG des Europäischen Parlaments und des Rates vom 25. November 2009 zur Änderung der Richtlinie 2002/21/EG über einen gemeinsamen Rechtsrahmen für elektronische Kommunikationsnetze und -dienste, der Richtlinie 2002/19/EG über den Zugang zu elektronischen Kommunikationsnetzen und zugehörigen Einrichtungen sowie deren Zusammenschaltung und der Richtlinie 2002/20/EG über die Genehmielektronischer Kommunikationsnetze gung -dienste (3) (Richtlinie "Bessere Rechtsetzung") bekräftigt worden. Darüber hinaus wird in der RSPG-Stellungnahme vom 18. September 2009 zur digitalen Dividende zur Anwendung der WAPECS-Grundsätze aufgerufen und nahegelegt, dass die Kommission möglichst rasch die darin enthaltenen Empfehlungen umsetzt, um die Unsicherheit auf EU-Ebene in Bezug auf die Fähigkeit der Mitgliedstaaten zur Freigabe des 800-MHz-Bands zu minimieren.
- Gemäß Artikel 4 Absatz 2 der Frequenzentscheidung erteilte die Kommission am 3. April 2008 der Europäischen Konferenz der Verwaltungen für Post und Telekommunikation (nachstehend "CEPT") das Mandat, für das 800-MHz-Band technische Bedingungen zu definieren, die für drahtlose Fest- und/oder Mobilkommunikati-

- In seiner Entschließung "Ausschöpfung der digitalen Dividende in Europa: ein gemeinsames Konzept für die Nutzung der durch die Digitalumstellung frei werdenden Frequenzen" vom 24. September 2008 drängt das Europäische Parlament die Mitgliedstaaten zur möglichst raschen Freigabe ihrer digitalen Dividenden und fordert entsprechende Maßnahmen auf Gemeinschaftsebene. In den Schlussfolgerungen des Rates vom 18. Dezember 2009 bezüglich der Ummünzung der digitalen Dividende in sozialen Nutzen und wirtschaftliches Wachstum wird der Standpunkt des Rates von 2008 bekräftigt, der die Kommission aufgefordert hatte, die Mitgliedstaaten bei dem Prozess zu unterstützen, der zu einer engen Zusammenarbeit zwischen den Mitgliedstaaten bei der Koordinierung der Frequenznutzung führen und die volle Ausschöpfung der digitalen Dividende gewährleisten soll.
- Angesichts der Bedeutung der Breitbandkommunikation für das Wirtschaftswachstum wurde im Europäischen Konjunkturprogramm (4) das Ziel gesetzt, zwischen 2010 und 2013 eine hundertprozentige Breitbandversorgung zu erreichen (5). Ohne eine wichtige Rolle der drahtlosen Infrastrukturen lässt sich dies nicht bewerkstelligen, was auch die Bereitstellung von Breitbandanschlüssen in ländlichen Gebieten einschließt, die zum Teil durch einen frühzeitigen Zugang zur digitalen Dividende zum Nutzen solcher Gebiete realisiert werden kann.

Die Zuweisung des 800-MHz-Bands für terrestrische Systeme, die elektronische Kommunikationsdienste erbrin-

gen können, wäre ein wichtiger Schritt zur Konvergenz

des Mobilfunk-, Festnetz- und Rundfunksektors, der auch

der technischen Innovation gerecht wird. Die in diesem

Frequenzband erbrachten Dienstleistungen sollten haupt-

sächlich den Zugang der Endnutzer zur Breitbandkom-

munikation, einschließlich Rundfunkinhalten, ermögli-

chen. onsnetze optimiert, aber nicht auf diese beschränkt sind;

besonderer Schwerpunkt sollte

dabei

⁽⁴⁾ Schlussfolgerungen des Vorsitzes, Rat der Europäischen Union, Brüs-(1) ABl. L 108 vom 24.4.2002, S. 1. sel, 12. Dezember 2008, 17271/08.

⁽²⁾ KOM(2009) 586.

⁽³⁾ ABl. L 337 vom 18.12.2009, S. 37.

Vom Rat gebilligt: Eckpunktepapier des Rates "Wettbewerbsfähigkeit", März 2009.

gemeinsame und (am wenigsten einschränkende) technische Mindestanforderungen, eine optimale Frequenzregelung sowie eine Empfehlung zum Umgang mit PMSE-Diensten ("Programme Making and Special Events") gelegt werden.

- (7) Die CEPT hat gemäß diesem Mandat vier Berichte (CEPT-Berichte 29, 30, 31 und 32) angenommen. Sie enthalten die technischen Bedingungen für den Betrieb von Basisstationen und Endgeräten im 800-MHz-Band. Auf der Grundlage optimierter Parameter für die wahrscheinlichsten Arten der Nutzung dieses Frequenzbands ermöglichen diese harmonisierten technischen Bedingungen größenbedingte Kostenvorteile, ohne den Einsatz einer bestimmten Technologie zu erfordern.
- Der CEPT-Bericht 29 bietet Orientierung in Fragen der grenzübergreifenden Koordinierung, die vor allem in der Phase, in der die Systeme nebeneinander bestehen, eine wichtige Rolle spielen, d. h. wenn einige Mitgliedstaaten möglicherweise bereits die für drahtlose Fest- und/oder Mobilkommunikationsnetze optimierten technischen Bedingungen anwenden, während in anderen Mitgliedstaaten noch immer Rundfunksender mit hoher Sendeleistung im 800-MHz-Band betrieben werden. Die CEPT ist der Auffassung, dass in den Schlusserklärungen der regionalen Funkkonferenz der Internationalen Fernmeldeunion (ITU) über die Planung der digitalen terrestrischen Rundfunkdienste in Teilen der Regionen 1 und 3 in den Frequenzbändern 174-2 MHz und 470-862 MHz (GE06-Übereinkommen) die für eine grenzübergreifende Koordinierung notwendigen Regulierungsverfahren enthalten
- (9)Im CEPT-Bericht 30 werden mit den so genannten Frequenzblock-Entkopplungsmasken (Block-Edge BEM) die am wenigsten einschränkenden technischen Bedingungen aufgestellt. Dabei handelt es sich um regulatorische Anforderungen, die dem Management des Risikos funktechnischer Störungen zwischen benachbarten Netzen dienen und unbeschadet der Grenzwerte gelten, die in den gemäß der Richtlinie 1999/5/EG des Europäischen Parlaments und des Rates vom 9. März 1999 über Funkanlagen und Telekommunikationsendeinrichtungen und die gegenseitige Anerkennung ihrer Konformität (1) (FuTEE-Richtlinie) aufgestellten Gerätenormen festgelegt sind. Auf der Grundlage dieses CEPT-Berichts sind die BEM für Frequenzduplexbetrieb (FDD) und Zeitduplexbetrieb (TDD) für drahtlose Fest- und/oder Mobilkommunikationsnetze optimiert, aber nicht auf diese beschränkt.
- (10) Sollten funktechnische Störungen auftreten oder nach begründeter Ansicht auftreten können, könnten zur Ergänzung der im CEPT-Bericht 30 aufgezeigten Maßnahmen auch auf nationaler Ebene geeignete Maßnahmen erlassen werden.
- (11) Die Vermeidung funktechnischer Störungen in Fernsehempfängern, einschließlich Kabelfernsehempfängern, kann auch von einer wirksameren Störunterdrückung in

- den Geräten selbst abhängen. Die für Fernsehempfänger geltenden Bedingungen sollten so rasch wie möglich im Rahmen der Richtlinie 2004/108/EG des Europäischen Parlaments und des Rates vom 15. Dezember 2004 zur Angleichung der Rechtsvorschriften der Mitgliedstaaten über die elektromagnetische Verträglichkeit und zur Aufhebung der Richtlinie 89/336/EWG (²) (EMV-Richtlinie) behandelt werden.
- (12) Die Unterdrückung funktechnischer Störungen in Fernsehempfängern, einschließlich Kabelfernsehempfängern, kann auch von den Grenzwerten für blockinterne Aussendungen und Außerblockaussendungen von Endgeräten abhängen. Die für Endgeräte geltenden Bedingungen sollten im Einklang mit den im CEPT-Bericht 30 aufgezeigten Elementen so rasch wie möglich im Rahmen der FuTEE-Richtlinie behandelt werden.
- (13)Dem CEPT-Bericht 31 zufolge sollte die Frequenzregelung für das 800-MHz-Band sich vorzugsweise auf den FDD-Modus stützen, um die grenzübergreifende Koordinierung mit Rundfunkdiensten zu erleichtern. Es wird darauf hingewiesen, dass damit keine der derzeit in Betracht kommenden Technologien diskriminiert oder begünstigt wird. Dies hindert die Mitgliedstaaten nicht daran, andere Frequenzregelungen zu treffen, um a) Ziele von allgemeinem Interesse zu erreichen, b) durch eine marktorientierte Frequenzverwaltung für größere Effizienz zu sorgen, c) durch die gemeinsame Nutzung bestehender Rechte während einer Übergangsperiode für größere Effizienz zu sorgen oder d) funktechnische Störungen zu vermeiden, z. B. in Abstimmung mit Drittländern. Bei der Zuweisung oder Bereitstellung des 800-MHz-Bands für terrestrische Systeme, die elektronische Kommunikationsdienste erbringen können, sind die Mitgliedstaaten daher gehalten, auf die bevorzugte Frequenzregelung oder alternative Regelungen zurückzugreifen, die im CEPT-Bericht 31 beschrieben werden.
- Im CEPT-Bericht 32 wird ein Interesse an einem weiteren Betrieb von PMSE-Anwendungen festgestellt und auf eine Reihe möglicher Frequenzbänder und innovativer technischer Entwicklungen hingewiesen, die als Lösung für die derzeitige Nutzung des 800-MHz-Bands durch diese Anwendungen dienen könnten. Die Behörden sollten die bestehenden Möglichkeiten und die Effizienz von PMSE-Systemen weiter untersuchen und ihre Erkenntnisse in die regelmäßigen Berichte über effiziente Frequenznutzung an die Kommission aufnehmen.
- (15) Angesichts der vom Europäischen Parlament, dem Rat und der RSPG festgestellten Dringlichkeit und des steigenden Bedarfs an terrestrischen elektronischen Breitband-Kommunikationsdiensten, der in Untersuchungen auf europäischer und globaler Ebene festgestellt worden ist, sollten die Ergebnisse des der CEPT erteilten Mandats in der Europäischen Union Anwendung finden und von den Mitgliedstaaten umgesetzt werden, sobald diese das 800-MHz-Band für andere Netze als Rundfunknetze mit hoher Sendeleistung zuweisen.

⁽¹⁾ ABl. L 91 vom 7.4.1999, S. 10.

⁽²⁾ ABl. L 390 vom 31.12.2004, S. 24.

- (16) Einerseits besteht ein dringender Bedarf an einheitlichen technischen Bedingungen für die effiziente Nutzung des 800-MHz-Bands für Systeme, die elektronische Kommunikationsdienste erbringen können. Andererseits ist aber zu gewährleisten, dass der Nutzen eines harmonisierten europäischen Konzepts nicht durch kurzfristige Maßnahmen eines oder mehrerer Mitgliedstaaten geschmälert wird, so dass der Zeitrahmen unmittelbare Auswirkungen auf die Organisation der Rundfunkdienste durch die Mitgliedstaaten innerhalb ihrer Hoheitsgebiete hat
- (17) Die Mitgliedstaaten k\u00f6nnen individuell entscheiden, ob und wann sie das 800-MHz-Band f\u00fcr andere Netze als Rundfunknetze mit hoher Sendeleistung zuweisen oder verf\u00fcgbar machen, wobei die Nutzung des 800-MHz-Bands f\u00fcr Zwecke der \u00f6ffentlichen Sicherheit und Ordnung und der Verteidigung von diesem Beschluss unber\u00fchrt bleibt.
- (18) Die Kommission sollte keinen Zeitpunkt festlegen, ab dem die Mitgliedstaaten die Nutzung des 800-MHz-Bands für Systeme, die elektronische Kommunikationsdienste erbringen können, erlauben müssen. Dies wird, falls erforderlich, vom Parlament und dem Rat auf Vorschlag der Kommission beschlossen.
- (19) Die Zuweisung und Bereitstellung des 800-MHz-Bands im Einklang mit den Ergebnissen des der CEPT erteilten Mandats trägt der Tatsache Rechnung, dass es andere Funkanwendungen gibt, die nicht unter diesen Beschluss fallen. Wird in den CEPT-Berichten 29, 30, 31 und 32 nicht auf die Koexistenz mit einer bestimmten Funkanwendung eingegangen, so können geeignete Kriterien für eine gemeinsame Frequenznutzung aufgrund nationaler Erwägungen festgelegt werden.
- (20)Damit das 800-MHz-Band auch dann optimal genutzt werden kann, wenn benachbarte Mitgliedstaaten oder Drittländer unterschiedliche Verwendungszwecke vorsehen, bedarf es einer konstruktiven Koordinierung grenzüberschreitender Aussendungen und eines innovativen Vorgehens aller Beteiligten, wobei die Stellungnahmen der RSPG vom 19. Juni 2008 über Frequenzfragen an den EU-Außengrenzen sowie vom 18. September 2009 über die digitale Dividende zu berücksichtigen sind. Die Mitgliedstaaten sollten dem Erfordernis Rechnung tragen, sich mit jenen Mitgliedstaaten abzustimmen, die weiterhin von ihrem Recht Gebrauch machen, Rundfunk mit hoher Sendeleistung zu betreiben. Sie sollten zudem eine künftige Neuorganisation des 800-MHz-Bands erleichtern, um so langfristig eine optimale Frequenznutzung durch elektronische Kommunikationsdienste im unteren und mittleren Sendeleistungsbereich zu ermöglichen. Im Sonderfall einer Koexistenz mit aeronautischen Funknavigationssystemen, die neben den BEM zusätzliche technische Maßnahmen erfordert, sollten die Mitgliedstaaten bilaterale oder multilaterale Vereinbarungen schließen.
- (21) Aus der Nutzung des 800-MHz-Bands durch andere bestehende Anwendungen in Drittländern können sich in

- einigen Mitgliedstaaten Beschränkungen ergeben bei der Einführung und Nutzung dieses Bandes für terrestrische Systeme, die elektronische Kommunikationsdienste erbringen können. Dies ist bei einem etwaigen künftigen Beschluss zu berücksichtigen, mit dem den Mitgliedstaaten ein Termin gesetzt wird, ab dem sie die Nutzung des 800-MHz-Bands für solche terrestrischen Systeme erlauben müssen. Informationen über solche Beschränkungen werden der Kommission nach Artikel 7 und Artikel 6 Absatz 2 der Frequenzentscheidung übermittelt und gemäß deren Artikel 5 veröffentlicht.
- (22) Um auch langfristig eine effektive Nutzung des 800-MHz-Frequenzbands sicherzustellen, sollten die Behörden weiterhin mögliche Lösungen zur Steigerung der Effizienz und innovativen Nutzung untersuchen. Solche Untersuchungen sollten bei Überlegungen im Hinblick auf eine Überprüfung dieses Beschlusses berücksichtigt werden.
- (23) Die in diesem Beschluss vorgesehenen Maßnahmen stehen mit der Stellungnahme des Funkfrequenzausschusses im Einklang —

HAT FOLGENDEN BESCHLUSS ERLASSEN:

Artikel 1

Dieser Beschluss dient der Harmonisierung der technischen Bedingungen für die Verfügbarkeit und effiziente Nutzung des Frequenzbands 790-862 MHz ("800-MHz-Band") für terrestrische Systeme, die elektronische Kommunikationsdienste in der Europäischen Union erbringen können.

Artikel 2

- (1) Wenn die Mitgliedstaaten das 800-MHz-Band für andere Netze als Rundfunknetze mit hoher Sendeleistung zuweisen oder bereitstellen, so geschieht dies auf nicht ausschließlicher Basis für terrestrische Systeme, die elektronische Kommunikationsdienste erbringen können, gemäß den Parametern im Anhang dieses Beschlusses.
- (2) Die Mitgliedstaaten stellen sicher, dass die in Absatz 1 genannten Systeme einen ausreichenden Schutz der Systeme in benachbarten Frequenzbändern gewährleisten.
- (3) Die Mitgliedstaaten erleichtern grenzübergreifende Koordinierungsvereinbarungen mit dem Ziel, unter Berücksichtigung bestehender Regulierungsverfahren und Rechte den Betrieb der in Absatz 1 genannten Systeme zu ermöglichen.
- (4) In geografischen Gebieten, in denen die Koordinierung mit Drittländern ein Abweichen von den Parametern im Anhang dieses Beschlusses erforderlich macht, sind die Mitgliedstaaten nicht gehalten, die Verpflichtungen aus diesem Beschluss zu erfüllen, sofern sie der Kommission die diesbezüglichen Informationen unter Angabe der betroffenen Gebiete mitteilen und gemäß der Frequenzentscheidung veröffentlichen. Die Mitgliedstaaten unternehmen alle praktikablen Anstrengungen zur Lösung solcher Abweichungen und setzen die Kommission davon in Kenntnis.

Artikel 3

Die Mitgliedstaaten beobachten die Nutzung des 800-MHz-Bands und teilen der Kommission auf Ersuchen ihre Erkenntnisse mit. Die Kommission nimmt gegebenenfalls eine Überprüfung dieses Beschlusses vor.

Artikel 4

Dieser Beschluss ist an die Mitgliedstaaten gerichtet.

Brüssel, den 6. Mai 2010

Für die Kommission Neelie KROES Vizepräsidentin

ANHANG

IN DEN ARTIKELN GENANNTE PARAMETER

Die technischen Bedingungen in diesem Anhang werden in Gestalt von Frequenzregelungen und Frequenzblock-Entkopplungsmasken (Block-Edge Masks, BEM) vorgegeben. Eine BEM ist eine Spektrumsmaske, die frequenzabhängig und auf den Rand eines Frequenzblocks bezogen ist, für den einem Betreiber entsprechende Nutzungsrechte erteilt wurden. Sie umfasst blockinterne und -externe Elemente, die für Frequenzen innerhalb und außerhalb des zugeteilten Frequenzblocks die jeweils zulässige Strahlungsleistung bestimmen.

Die BEM ergeben sich durch Kombination der in den nachstehenden Tabellen aufgeführten Werte, wobei der Grenzwert bei einer bestimmten Frequenz durch den höchsten (wenigsten strengen) Wert der a) Grundanforderungen, b) der Übergangsanforderungen und c) der blockinternen Anforderungen (soweit anwendbar) bestimmt wird. Die BEM stellen Grenzwerte für die mittlere äquivalente isotrope Strahlungsleistung (EIRP) oder die Gesamtstrahlungsleistung (TRP) (¹) dar, die über das Mittelungszeitintervall und die Messfrequenzbandbreite abgestrahlt wird. Auf der Zeitebene wird die EIRP bzw. TRP über die aktiven Signalteile (Bursts) gemittelt und entspricht einer einzigen Einstellung der Leistungsregelung. Auf der Frequenzebene wird die EIRP bzw. TRP über die in den nachstehenden Tabellen bestimmte Messbandbreite ermittelt (²). Generell und sofern nicht anders vermerkt, entsprechen die BEM der Strahlungsleistung des jeweiligen Geräts, unabhängig von der Anzahl der Sendeantennen, mit Ausnahme der Übergangsanforderungen für Basisstationen, die je Antenne angegeben werden.

Die BEM sind ein wesentlicher Teil der notwendigen Bedingungen für eine Koexistenz zwischen Diensten auf nationaler Ebene. Allerdings versteht sich auch, dass die ermittelten BEM nicht immer den erforderlichen Störungsschutz bieten, so dass unter Umständen auf nationaler Ebene angemessene zusätzliche Störungsminderungstechniken anzuwenden sind, um verbleibende funktechnische Störungen zu beseitigen.

Die Mitgliedstaaten müssen außerdem dafür sorgen, dass die Betreiber terrestrischer Systeme, die elektronische Kommunikationsdienste im 800-MHz-Band erbringen können, weniger strenge als die folgenden technischen Parameter anwenden können, sofern sie zwischen allen Beteiligten vereinbart worden sind und die betreffenden Betreiber weiterhin die für den Schutz anderer Dienste, Anwendungen oder Netze geltenden technischen Bedingungen sowie die sich aus der grenzübergreifenden Koordinierung ergebenden Verpflichtungen erfüllen.

In diesem Frequenzband betriebene Geräte können auch anderen als den folgenden Leistungsgrenzwerten entsprechen, sofern geeignete Störungsminderungstechniken eingesetzt werden, die den Anforderungen der Richtlinie 1999/5/EG genügen und mindestens einen gleichwertigen Störungsschutz bieten wie diese technischen Parameter.

Der Begriff Blockgrenze bezieht sich auf die Grenze eines zur Nutzung freigegebenen Frequenzblocks. Der Begriff Bandgrenze bezieht sich auf die Grenze eines für eine bestimmte Nutzung zugewiesenen Frequenzbands.

A. Allgemeine Parameter

- 1. Innerhalb des Frequenzbands 790-862 MHz gilt folgende Frequenzregelung:
 - a) Die zugeteilten Blöcke umfassen ganzzahlige Vielfache von 5 MHz.
 - b) Der Duplexbetrieb erfolgt im FDD-Modus mit folgenden Regelungen: Der Duplexabstand beträgt 41 MHz, wobei die Aussendungen der Basisstationen (Downlink) im Unterband ab 791 MHz (bis höchstens 821 MHz) und die Aussendungen der Endgeräte (Uplink) im Oberband ab 832 MHz (bis höchstens 862 MHz) erfolgen.
- 2. Ungeachtet von Teil A Absatz 1 können die Mitgliedstaaten, soweit die technischen Bedingungen in den Teilen B und C dieses Anhangs erfüllt werden, andere Frequenzregelungen treffen, um a) Ziele von allgemeinem Interesse zu erreichen, b) durch eine marktorientierte Frequenzverwaltung für größere Effizienz zu sorgen, c) durch die gemeinsame Nutzung bestehender Rechte während der Übergangsperiode für größere Effizienz zu sorgen oder d) funktechnische Störungen zu vermeiden.

B. Technische Bedingungen für FDD- und TDD-Basisstationen

1. Grenzwerte für blockinterne Aussendungen:

Für Basisstationen sind keine blockinternen EIRP-Grenzwerte vorgeschrieben. Die Mitgliedstaaten können jedoch Grenzwerte festlegen, die normalerweise zwischen 56 dBm/5 MHz und 64 dBm/5 MHz liegen, sofern dem keine anderen Gründe entgegenstehen.

2. Grenzwerte für Außerblockaussendungen:

⁽¹) Die TRP ist ein Maß für die von der Antenne tatsächlich abgestrahlte Sendeleistung. Definiert ist die TRP als Integral der rundum in alle Richtungen übertragenen Leistung.

⁽²⁾ Die Messbandbreite der für die Prüfmessung verwendeten Ausrüstung kann kleiner sein als die in den Tabellen angegebene Messbandbreite

Tabelle 1 Grundanforderungen — BEM für Außerblock-EIRP-Grenzwerte von Basisstationen

Frequenzbereich von Außerblockaussendungen	Maximale mittlere Außerblock-EIRP	Messbandbreite
FDD-Uplink-Frequenzen	– 49,5 dBm	5 MHz
TDD-Frequenzen	– 49,5 dBm	5 MHz

Tabelle 2 Übergangsanforderungen — BEM für Außerblock-EIRP-Grenzwerte von Basisstationen je Antenne $(^3)$ über FDD-Downlink- und TDD-Frequenzen

Frequenzbereich von Außerblockaussendungen	Maximale mittlere Außerblock-EIRP	Messbandbreite
– 10 bis – 5 MHz (untere Blockgrenze)	18 dBm	5 MHz
- 5 bis 0 MHz (untere Blockgrenze)	22 dBm	5 MHz
0 bis + 5 MHz (obere Blockgrenze)	22 dBm	5 MHz
+ 5 bis + 10 MHz (obere Blockgrenze)	18 dBm	5 MHz
Übrige FDD-Downlink-Frequenzen	11 dBm	1 MHz

Tabelle 3 Übergangsanforderungen — BEM für Außerblock-EIRP-Grenzwerte von Basisstationen je Antenne (4) über Frequenzen, die als Schutzband verwendet werden

Frequenzbereich von Außerblockaussendungen	Maximale mittlere Außerblock-EIRP	Messbandbreite
Schutzband zwischen der Rundfunkbandgrenze bei 790 MHz und der FDD-Downlink-Band- grenze (¹)	17,4 dBm	1 MHz
Schutzband zwischen der Rundfunkbandgrenze bei 790 MHz und der TDD-Bandgrenze	15 dBm	1 MHz
Schutzband zwischen der FDD-Downlink- und der FDD-Uplink-Bandgrenze (Duplexabstand) (²)	15 dBm	1 MHz
Schutzband zwischen der FDD-Downlink-Band- grenze und der TDD-Bandgrenze	15 dBm	1 MHz
Schutzband zwischen der FDD-Uplink-Band- grenze und der TDD-Bandgrenze	15 dBm	1 MHz

⁽¹) 790 MHz bis 791 MHz für die in Teil A Absatz 1 beschriebene Frequenzregelung. (²) 821 MHz bis 832 MHz für die in Teil A Absatz 1beschriebene Frequenzregelung.

⁽³⁾ Für eine bis vier Antennen. (4) Siehe Fußnote 3.

Tabelle 4

Grundanforderungen — BEM für Außerblock-EIRP-Grenzwerte von Basisstationen über Frequenzen unter 790 MHz

Fall		Blockinterne EIRP von Basisstationen (P) dBm/10 MHz	Maximale mittlere Au- ßerblock-EIRP	Messbandbreite	
A	Geschützte Fernsehkanäle	P ≥ 59	0 dBm	8 MHz	
		36 ≤ P < 59	(P – 59) dBm	8 MHz	
		P < 36	– 23 dBm	8 MHz	
В	Fernsehkanäle mit mittlerem Stö-	P ≥ 59	10 dBm	8 MHz	
	rungsschutz	36 ≤ P < 59	(P – 49) dBm	8 MHz	
		P < 36	– 13 dBm	8 MHz	
С	Ungeschützte Fernsehkanäle	Keine Vorgabe	22 dBm	8 MHz	

Die Fälle A, B und C in Tabelle 4 können je Rundfunkkanal und/oder je Region angewandt werden, so dass der Störungsschutz desselben Rundfunkkanals in verschiedenen geografischen Gebieten bzw. der Störungsschutz verschiedener Rundfunkkanäle innerhalb desselben geografischen Gebiets unterschiedlich sein kann. Die Mitgliedstaaten wenden die Grundanforderungen in Fall A an, wenn zum Zeitpunkt der Einführung terrestrischer Systeme, die elektronische Kommunikationsdienste erbringen können, digitale terrestrische Rundfunkkanäle in Betrieb sind. Die Mitgliedstaaten können die Grundanforderungen in den Fällen A, B oder C anwenden, wenn zum Zeitpunkt der Einführung terrestrischer Systeme, die elektronische Kommunikationsdienste erbringen können, die betreffenden Rundfunkkanäle nicht in Betrieb sind. Sie berücksichtigen dabei, dass die Fälle A und B die Möglichkeit offen lassen, entsprechende digitale terrestrische Rundfunkkanäle zu einem späteren Zeitpunkt in Betrieb zu nehmen, während im Fall C keine Inbetriebnahme solcher Rundfunkkanäle geplant ist.

C. Technische Bedingungen für FDD- bzw. TDD-Endgeräte

Tabelle 5

Blockinterne Anforderungen — BEM für die Grenzwerte blockinterner Aussendungen von Endgeräten über FDD-Uplink- und TDD-Frequenzen

Maximale mittlere blockinterne Sendeleistung	23 dBm (¹)

⁽¹) Dieser Leistungsgrenzwert ist als EIRP für feste oder eingebaute Endgeräte bzw. als TRP für mobile oder ortsungebundene Endgeräte spezifiziert. Für isotrope Antennen sind EIRP und TRP äquivalent. Für diesen Wert gilt eine Toleranz bis + 2 dB, um extremen Umweltbedingungen und Exemplarstreuungen Rechnung zu tragen.

Für spezifische Anwendungen, z. B. feste Endgeräte in ländlichen Gebieten, können die Mitgliedstaaten den Grenzwert in Tabelle 5 erleichtern, sofern dies den Schutz anderer Dienste, Netze und Anwendungen sowie die Erfüllung grenzübergreifender Verpflichtungen nicht beeinträchtigt.

Anhang F.5

zu den Nutzungsbedingungen im Verfahren betreffend Frequenzzuteilungen in den Frequenzbereichen 800 MHz, 900 MHz und 1800 MHz:

Entscheidung der Kommission vom 16. Oktober 2009 (Nr. 2009/766/EG)

ENTSCHEIDUNG DER KOMMISSION

vom 16. Oktober 2009

zur Harmonisierung des 900-MHz-Bands und des 1 800-MHz-Bands für terrestrische Systeme, die europaweite elektronische Kommunikationsdienste in der Gemeinschaft erbringen können

(Bekannt gegeben unter Aktenzeichen K(2009) 7801)

(Text von Bedeutung für den EWR)

(2009/766/EG)

DIE KOMMISSION DER EUROPÄISCHEN GEMEINSCHAFTEN —

gestützt auf den Vertrag zur Gründung der Europäischen Gemeinschaft,

gestützt auf die Entscheidung Nr. 676/2002/EG des Europäischen Parlaments und des Rates vom 7. März 2002 über einen Rechtsrahmen für die Funkfrequenzpolitik in der Europäischen Gemeinschaft (Frequenzentscheidung) (¹), insbesondere auf Artikel 4 Absatz 3,

in Erwägung nachstehender Gründe:

- (1) Frequenzbänder 890—915 MHz 935-960 MHz waren reserviert und zweckbestimmt für den Betrieb des öffentlichen europaweiten zellularen digitalen terrestrischen Mobilfunkdienstes in allen Mitgliedstaaten entsprechend einer gemeinsamen Spezifikation, die in der Richtlinie 87/372/EWG des Rates vom 25. Juni 1987 über die Frequenzbänder, die für die koordinierte Einführung eines europaweiten öffentlichen zellularen digitalen terrestrischen Mobilfunkdienstes in der Gemeinschaft bereitzustellen sind (2), festgelegt und sodann durch die Empfehlung des Rates vom 25. Juni 1987 für die koordinierte Einführung eines europaweiten öffentlichen zellularen digitalen terrestrischen Mobilfunkdienstes in der Gemeinschaft (3) sowie die Entschließung des Rates vom 14. Dezember 1990 über die Schlussphase in der koordinierten Einführung eines europaweiten öffentlichen zellularen digitalen terrestrischen Mobilfunkdienstes in der Gemeinschaft (GSM) (4) ergänzt worden war.
- (2) Die Richtlinie 2009/114/EG des Europäischen Parlaments und des Rates (5) ändert die Richtlinie 87/372/EWG und öffnet die Frequenzbänder 880—915 MHz und 925—960 MHz für das universelle Mobilkommunikationssystem UMTS (Universal Mobile Telecommunications System) und andere terrestrische Systeme, die elektronische Kommunikationsdienste erbringen und entsprechend den technischen Durchführungsmaßnahmen, die gemäß der Entscheidung Nr. 676/2002/EG ("Frequenzentscheidung") erlassen werden, störungsfrei neben dem globalen Mobilkommunikationssystem GSM (Global System for Mobile Communications) betrieben werden können. Es sollten deshalb technische Maßnahmen erlassen

werden, um im 900-MHz-Band ein störungsfreies Nebeneinander von GSM-System und anderen Systemen zu ermöglichen.

- (3) Die Frequenzbänder 1 710—1 785 MHz und 1 805—1 880 MHz (das "1 800-MHz-Band") sind für den GSM-Betrieb verfügbar gemacht geworden und werden gegenwärtig überall in Europa für GSM-Systeme genutzt. Das 1 800-MHz-Band sollte ebenfalls unter den gleichen Bedingungen wie das 900-MHz-Band für andere terrestrische Systeme geöffnet werden, die elektronische Kommunikationsdienste erbringen und störungsfrei neben GSM-Systemen betrieben werden können.
- (4) Entsprechend den Vorgaben der Richtlinie 87/372/EWG zum Schutz der GSM-Nutzung im 900-MHz-Band sollte die derzeitige GSM-Nutzung auch im 1 800-MHz-Band in der gesamten Gemeinschaft geschützt werden, solange es eine hinreichende Nachfrage nach diesem Dienst gibt.
- (5) Gemäß Artikel 4 Absatz 2 der Frequenzentscheidung erteilte die Kommission am 5. Juli 2006 der Europäischen Konferenz der Verwaltungen für Post und Telekommunikation (nachfolgend "CEPT" genannt) ein Mandat zur Entwicklung möglichst wenig einschränkender technischer Bedingungen für diese Frequenzbänder im Rahmen ihrer WAPECS-Politik für den Drahtloszugang zu elektronischen Kommunikationsdiensten (Wireless Access Policy for Electronic Communications Services), die auch das 900-MHz-Band und das 1 800-MHz-Band betrifft.
- Technologieneutralität und Dienstneutralität sind politische Ziele, die von den Mitgliedstaaten im Rahmen der Gruppe für Frequenzpolitik (RSPG) in der WAPECS-Stellungnahme vom 23. November 2005 unterstützt wurden, um eine flexiblere Frequenznutzung zu erreichen. In ihrer WAPECS-Stellungnahme vertritt die Gruppe für Frequenzpolitik die Auffassung, dass diese politischen Ziele schrittweise und nicht abrupt verwirklicht werden sollten, um Marktstörungen zu vermeiden. Die Kommission legte ihre Auffassung hinsichtlich einer flexibleren Frequenznutzung in ihrer Mitteilung über den "zügigen Zugang zu Frequenzen für drahtlose elektronische Kommunikationsdienste durch mehr Flexibilität" (6) dar und stellte darin u. a. heraus, dass im Zusammenhang mit der Einführung der flexiblen Frequenznutzung für elektronische Kommunikationsdienste eine einheitliche und angemessene Lösung für Mobilfunkfrequenzen, die für Dienste der zweiten und dritten Generation genutzt werden, erforderlich ist.

⁽¹⁾ ABl. L 108 vom 24.4.2002, S. 1.

⁽²⁾ ABl. L 196 vom 17.7.1987, S. 85.

⁽³⁾ ABl. L 196 vom 17.7.1987, S. 81.

⁽⁴⁾ ABl. C 329 vom 31.12.1990, S. 25.

⁽⁵⁾ Siehe Seite 25 dieses Amtsblatts.

⁽⁶⁾ KOM(2007) 50.

- (7) Entsprechend den Vorgaben der Richtlinie 87/372/EWG zur Öffnung des 900-MHz-Bands sollte das gegenwärtig für GSM genutzte 1 800-MHz-Band daher ebenfalls für GSM und andere terrestrische Systeme, die elektronische Kommunikationsdienste erbringen und störungsfrei neben GSM-Systemen betrieben werden können, zugewiesen werden, wobei die Mitgliedstaaten alle notwendigen Maßnahmen treffen sollten, damit der Betrieb der GSM-Systeme vor funktechnischen Störungen geschützt bleibt.
- (8) Weitere Systeme, die im 900-MHz-Band und im 1 800-MHz-Band eingeführt werden sollen, müssen ihre technische Kompatibilität sowohl mit benachbarten Netzen, die von anderen Rechteinhabern in diesen Frequenzbändern betrieben werden, als auch mit der Nutzung benachbarter Frequenzbänder des 900-MHz-Bands bzw. des 1 800-MHz-Bands garantieren.
- Bei Harmonisierungsmaßnahmen gemäß der Frequenzentscheidung erfolgt der Nachweis der technischen Kompatibilität durch Kompatibilitätsuntersuchungen, die von der CEPT im Auftrag der Kommission durchgeführt werden. Diese Untersuchungen sollen helfen, die technischen Bedingungen festzulegen, die sicherstellen, dass eine wachsende Anzahl terrestrischer Systeme, die elektronische Kommunikationsdienste erbringen können, störungsfrei nebeneinander betrieben werden können. Mit Hilfe des Funkfrequenzausschusses und im Einklang mit den WAPECS-Grundsätzen sollte eine Liste der Systeme, deren technische Kompatibilität nachgewiesen ist, aufgestellt und bei Notwendigkeit von der Kommission angepasst werden, um die Zahl der Systeme mit harmonisiertem Zugang zum 900-MHz-Band und zum 1800-MHz-Band mit der Zeit zu steigern.
- (10) Auf der Grundlage technischer Untersuchungen, vor allem der Berichte 82 und 96 des Ausschusses für elektronische Kommunikation (ECC) der CEPT und des aufgrund des Mandats vom 5. Juli 2006 ausgearbeiteten CEPT-Berichts 19 kam die CEPT zu dem Schluss, dass UMTS/900/1 800-Netze in städtischen Ballungszentren und deren Randgebieten sowie in ländlichen Gebieten bei Einhaltung ausreichender Trägerfrequenzabstände neben GSM/900/1 800-Netzen störungsfrei eingeführt werden können.
- (11) Die Ergebnisse des der CEPT erteilten Mandats sollten in der Gemeinschaft Anwendung finden und von den Mitgliedstaaten unverzüglich umgesetzt werden, da eine große Marktnachfrage nach UMTS-Diensten in diesen Frequenzbändern besteht. Ferner sollten die Mitgliedstaaten dafür sorgen, dass UMTS-Systeme einen angemessenen Schutz der in benachbarten Frequenzbändern betriebenen Systeme gewährleisten.
- (12) Zur Steigerung der Flexibilität bei gleichzeitiger Wahrung der notwendigen gesamteuropäischen Reichweite der in harmonisierten Frequenzbändern betriebenen elektronischen Kommunikationsdienste sollten die Mitgliedstaaten außerdem befugt sein, neben GSM und anderen festgelegten terrestrischen Systemen, die elektronische Kommunikationsdienste erbringen können, die Einführung weiterer Systeme im 900-MHz-Band und im 1 800-MHz-Band zu erlauben, sofern sie gewährleisten, dass solche terrestrischen Systeme störungsfrei nebeneinander betrieben werden können.

- (13) Zur technischen Verwaltung des Funkfrequenzspektrums gehört auch die Harmonisierung und Zuweisung von Frequenzbereichen. Diese Harmonisierung sollte die Erfordernisse der allgemeinen politischen Grundsätze, wie sie auf Gemeinschaftsebene ermittelt wurden, widerspiegeln. Die technische Verwaltung des Funkfrequenzspektrums umfasst jedoch weder Zuteilungs- und Genehmigungsverfahren (auch keine Fristen) noch die Entscheidung, ob bei der Zuteilung von Frequenzen wettbewerbsorientierte Auswahlverfahren heranzuziehen sind.
- (14) Unterschiedliche Ausgangssituationen in den Mitgliedstaaten könnten zu Wettbewerbsverzerrungen führen. Der geltende Rechtsrahmen sieht jedoch Instrumente vor, mit denen die Mitgliedstaaten solche Probleme in angemessener, nicht diskriminierender und objektiver Weise sowie unter Beachtung des Gemeinschaftsrechts bewältigen können, vor allem im Einklang mit der Richtlinie 87/372/EWG, der Richtlinie 2002/20/EG des Europäischen Parlaments und des Rates vom 7. März 2002 über die Genehmigung elektronischer Kommunikationsnetze und -dienste (Genehmigungsrichtlinie) (¹) und der Richtlinie 2002/21/EG des Europäischen Parlaments und des Rates vom 7. März 2002 über einen gemeinsamen Rechtsrahmen für elektronische Kommunikationsnetze und -dienste (Rahmenrichtlinie) (²).
- Die Frequenznutzung unterliegt den gemeinschaftsrechtlichen Vorschriften über den Schutz der öffentlichen Gesundheit, insbesondere der Richtlinie 2004/40/EG des Europäischen Parlaments und des Rates vom 29. April 2004 über Mindestvorschriften zum Schutz von Sicherheit und Gesundheit der Arbeitnehmer vor der Gefährdung durch physikalische Einwirkungen (elektromagnetische Felder) (18. Einzelrichtlinie im Sinne des Artikels 16 Absatz 1 der Richtlinie 89/391/EWG) (3) und der Empfehlung 1999/519/EG des Rates vom 12. Juli 1999 zur Begrenzung der Exposition der Bevölkerung gegenüber elektromagnetischen Feldern (0 Hz-300 GHz) (4). Der Gesundheitsschutz wird bei Funkausrüstungen dadurch gewährleistet, dass solche Anlagen die wesentlichen Anforderungen der Richtlinie 1999/5/EG des Europäischen Parlaments und des Rates vom 9. März 1999 über Funkanlagen und Telekommunikationsendeinrichtungen und die gegenseitige Anerkennung ihrer Konformität (5) erfüllen müssen.
- (16) Um die tatsächliche Nutzung des 900-MHz-Bands und des 1 800-MHz-Bands auch langfristig sicherzustellen, sollten die Behörden weiterhin Studien zur Steigerung der Effizienz und zur innovativen Nutzung durchführen. Im Hinblick auf eine Überarbeitung dieser Entscheidung zur Aufnahme weiterer Technologien könnten diese und andere Studien, die von der CEPT aufgrund weiterer Mandate durchgeführt werden, den Nachweis erbringen, dass neben GSM und UMTS weitere Systeme europaweite elektronische Kommunikationsdienste erbringen und durch geeignete Maßnahmen die technische Kompatibilität mit GSM und UMTS garantieren können.

⁽¹⁾ ABl. L 108 vom 24.4.2002, S. 21.

⁽²⁾ ABl. L 108 vom 24.4.2002, S. 33.

⁽³⁾ ABl. L 159 vom 30.4.2004, S. 1.

⁽⁴⁾ ABl. L 199 vom 30.7.1999, S. 59.

⁽⁵⁾ ABl. L 91 vom 7.4.1999, S. 10.

(17) Die in dieser Entscheidung vorgesehenen Maßnahmen stimmen mit der Stellungnahme des Funkfrequenzausschusses überein —

HAT FOLGENDE ENTSCHEIDUNG ERLASSEN:

Artikel 1

Diese Entscheidung dient der Harmonisierung der technischen Bedingungen für die Verfügbarkeit und die effiziente Nutzung des 900-MHz-Bands entsprechend der Richtlinie 87/372/EWG sowie des 1 800-MHz-Bands für terrestrische Systeme, die elektronische Kommunikationsdienste erbringen können.

Artikel 2

Für die Zwecke dieser Entscheidung gelten folgende Begriffsbestimmungen:

- a) "GSM-System" ist ein elektronisches Kommunikationsnetz, das den vom ETSI veröffentlichten GSM-Normen, insbesondere EN 301 502 und EN 301 511, entspricht;
- b) "900-MHz-Band" bezeichnet die Frequenzbänder 880—915 MHz und 925—960 MHz;
- c) "1 800-MHz-Band" bezeichnet die Frequenzbänder 1 710—1 785 MHz und 1 805—1 880 MHz.

Artikel 3

Die terrestrischen Systeme, die elektronische Kommunikationsdienste erbringen und störungsfrei neben GSM-Systemen im 900-MHz-Band im Sinne von Artikel 1 Absatz 1 der Richtlinie 87/372/EWG betrieben werden können, sind im Anhang aufgeführt. Für sie gelten die darin festgelegten Bedingungen und Umsetzungstermine.

Artikel 4

- (1) Das 1 800-MHz-Band wird mit Wirkung vom 9. November 2009 für GSM-Systeme zugewiesen und verfügbar gemacht.
- (2) Das 1 800-MHz-Band wird für jene anderen terrestrischen Systeme, die europaweite elektronische Kommunikations-

dienste erbringen können und im Anhang aufgeführt sind, zu den dort festgelegten Bedingungen und Umsetzungsterminen zugewiesen und verfügbar gemacht.

Artikel 5

- (1) Die Mitgliedstaaten können das 900-MHz-Band und das 1 800-MHz-Band für weitere, nicht im Anhang aufgeführte terrestrische Systeme zuweisen und verfügbar machen, sofern sie sicherstellen, dass
- a) solche Systeme störungsfrei neben den GSM-Systemen betrieben werden können,
- b) solche Systeme sowohl im eigenen Hoheitsgebiet als auch in benachbarten Mitgliedstaaten störungsfrei mit den im Anhang aufgeführten anderen Systemen betrieben werden können
- (2) Die Mitgliedstaaten gewährleisten, dass die in Artikel 3, in Artikel 4 Absatz 2 und in Absatz 1 dieses Artikels genannten anderen Systeme einen ausreichenden Schutz der Systeme in benachbarten Frequenzbändern garantieren.

Artikel 6

Die Mitgliedstaaten beobachten die Nutzung des 900-MHz-Bands und des 1 800-MHz-Bands, um deren effiziente Nutzung sicherzustellen, und erstatten der Kommission insbesondere dann Bericht, wenn sie eine Änderung des Anhangs für notwendig erachten.

Artikel 7

Diese Entscheidung ist an die Mitgliedstaaten gerichtet.

Brüssel, den 16. Oktober 2009

Für die Kommission Viviane REDING Mitglied der Kommission

ANHANG

LISTE DER TERRESTRISCHEN SYSTEME GEMÄSS ARTIKEL 3 UND ARTIKEL 4 ABSATZ 2

Die folgenden technischen Parameter sind ein wesentlicher Teil der notwendigen Bedingungen für ein Nebeneinander benachbarter Netze bei Fehlen bilateraler oder multilateraler Abkommen, ohne jedoch auszuschließen, dass zwischen den Betreibern dieser Netze weniger strenge technische Parameter vereinbart werden.

Systeme	Technische Parameter	Umsetzungstermin
UMTS-Normen, insbesondere EN 301 908-1,	Trägerfrequenzabstand von mindestens 5 MHz zwischen zwei benachbarten UMTS-Netzen Trägerfrequenzabstand von mindestens 2,8 MHz zwischen einem UMTS-Netz und einem benachbarten GSM-Netz	9. Mai 2010

Anhang F.6

zu den Nutzungsbedingungen im Verfahren betreffend Frequenzzuteilungen in den Frequenzbereichen 800 MHz, 900 MHz und 1800 MHz:

Beschluss der Kommission vom 18. April 2011 (Nr. 2011/251/EU)

BESCHLÜSSE

DURCHFÜHRUNGSBESCHLUSS DER KOMMISSION

vom 18. April 2011

zur Änderung der Entscheidung 2009/766/EG der Kommission zur Harmonisierung des 900-MHz-Bands und des 1 800-MHz-Bands für terrestrische Systeme, die europaweite elektronische Kommunikationsdienste in der Gemeinschaft erbringen können

(Bekannt gegeben unter Aktenzeichen K(2011) 2633)

(Text von Bedeutung für den EWR)

(2011/251/EU)

DIE EUROPÄISCHE KOMMISSION —

gestützt auf den Vertrag über die Arbeitsweise der Europäischen Union.

gestützt auf die Entscheidung Nr. 676/2002/EG des Europäischen Parlaments und des Rates vom 7. März 2002 über einen Rechtsrahmen für die Funkfrequenzpolitik in der Europäischen Gemeinschaft (Frequenzentscheidung) (1), insbesondere auf Artikel 4 Absatz 3,

in Erwägung nachstehender Gründe:

- (1) Die Entscheidung 2009/766/EG der Kommission (²) dient der Harmonisierung der technischen Bedingungen für die Verfügbarkeit und die effiziente Nutzung des 900-MHz-Bands entsprechend der Richtlinie 87/372/EWG des Rates vom 25. Juni 1987 über die Frequenzbänder, die für die koordinierte Einführung eines europaweiten öffentlichen zellularen digitalen terrestrischen Mobilfunkdienstes in der Gemeinschaft bereitzustellen sind (³), sowie des 1 800-MHz-Bands für terrestrische Systeme, die elektronische Kommunikationsdienste erbringen können.
- (2) Die Mitgliedstaaten haben die Nutzung des 900-MHz-Bands und des 1 800-MHz-Bands unter dem Gesichtspunkt der Effizienz im Hinblick auf die Zulassung weiterer Technologien beobachtet, wobei jedoch die technische Kompatibilität mit dem GSM- und UMTS-System gemäß der Richtlinie 87/372/EWG durch geeignete Maßnahmen gewährleistet bleiben muss.
- (3) Am 15. Juni 2009 erteilte die Kommission der Europäischen Konferenz der Verwaltungen für Post und Telekommunikation (CEPT) gemäß Artikel 4 Absatz 2 der Entscheidung Nr. 676/2002/EG ein Mandat zur Festlegung der technischen Bedingungen, die den Einsatz von LTE und möglicherweise weiterer Technologien im 900-MHz-Band und im 1 800-MHz-Band ermöglichen.
- (4) Die Antwort der CEPT auf dieses Mandat wird in den CEPT-Berichten 40 und 41 dargelegt. Die CEPT kommt darin zu dem Schluss, dass die LTE-Systeme (Long Term Evolution) und WiMAX-Systeme (Worldwide Interoperability for Microwave Access) im 900-MHz-Band und im

1 800-MHz-Band unter Einhaltung geeigneter Frequenzabstände zwischen den betreffenden Kanalrändern eingeführt werden können.

- (5) Bezüglich des Nebeneinanders von UMTS-, LTE- und Wi-MAX-Systemen sowie von Flugfunksystemen oberhalb von 960 MHz enthalten die CEPT-Berichte 41 und 42 Informationen und Empfehlungen zur Minderung funktechnischer Störungen.
- (6) Die Ergebnisse der Arbeiten, die entsprechend dem der CEPT erteilten Mandat durchgeführt wurden, sollten in der Europäischen Union Anwendung finden und so bald wie möglich von den Mitgliedstaaten verbindlich umgesetzt werden, da eine zunehmende Marktnachfrage nach LTE- und WiMAX-Diensten in diesen Frequenzbändern besteht. Ferner sollten die Mitgliedstaaten dafür sorgen, dass UMTS-, LTE- und WiMAX-Systeme einen angemessenen Schutz der vorhandenen, in benachbarten Frequenzbändern betriebenen Systeme gewährleisten.
- (7) Die harmonisierten Normen EN 301908-21 und EN 301908-22 werden gegenwärtig vom Europäischen Institut für Telekommunikationsnormen (ETSI) fertig gestellt, damit die Vermutung der Konformität mit Artikel 3 Absatz 2 der Richtlinie 1999/5/EG des Europäischen Parlaments und des Rates vom 9. März 1999 über Funkanlagen und Telekommunikationsendeinrichtungen und die gegenseitige Anerkennung ihrer Konformität (4) gelten kann
- (8) Der Anhang der Entscheidung 2009/766/EG sollte daher entsprechend geändert werden.
- (9) Die in diesem Beschluss vorgesehenen Maßnahmen entsprechen der Stellungnahme des Funkfrequenzausschusses —

HAT FOLGENDEN BESCHLUSS ERLASSEN:

Artikel 1

Der Anhang der Entscheidung 2009/766/EG wird durch den Anhang dieses Beschlusses ersetzt.

⁽¹⁾ ABl. L 108 vom 24.4.2002, S. 1.

⁽²⁾ ABl. L 274 vom 20.10.2009, S. 32.

⁽³⁾ ABl. L 196 vom 17.7.1987, S. 85.

⁽⁴⁾ ABl. L 91 vom 7.4.1999, S. 10.

Artikel 2

Dieser Beschluss ist an die Mitgliedstaaten gerichtet.

Brüssel, den 18. April 2011

Für die Kommission Neelie KROES Vizepräsidentin

ANHANG

"ANHANG

LISTE DER TERRESTRISCHEN SYSTEME GEMÄSS ARTIKEL 3 UND ARTIKEL 4 ABSATZ 2

Die folgenden technischen Parameter sind ein wesentlicher Teil der notwendigen Bedingungen für ein Nebeneinander benachbarter Netze bei Fehlen bilateraler oder multilateraler Abkommen, ohne jedoch auszuschließen, dass zwischen den Betreibern dieser Netze weniger strenge technische Parameter vereinbart werden.

Systeme	Technische Parameter	Umsetzungstermin	
UMTS gemäß den vom ETSI veröffentlichten UMTS-Nor- men, insbesondere EN 301908-1, EN 301908-2, EN 301908-3 und EN 301908-11	Trägerfrequenzabstand von mindestens 5 MHz zwischen zwei benachbarten UMTS-Netzen Trägerfrequenzabstand von mindestens 2,8 MHz zwischen einem UMTS-Netz und einem benachbarten GSM-Netz	9. Mai 2010	
LTE gemäß den vom ETSI veröffentlichten LTE-Normen, insbesondere EN 301908-1, EN 301908-13, EN 301908-14 und EN 301908-11	Frequenzabstand von mindestens 200 kHz zwischen dem LTE-Kanalrand und dem Kanalrand der GSM-Trägerfrequenz zwischen einem LTE-Netz und einem benachbarten GSM-Netz Kein Frequenzabstand ist notwendig zwischen dem LTE-Kanalrand und dem Kanalrand der UMTS-Trägerfrequenz zwischen einem LTE-Netz und einem benachbarten UMTS-Netz.	31. Dezember 2011	
	Kein Frequenzabstand ist notwendig zwischen LTE-Kanal- rändern zwischen zwei benachbarten LTE-Netzen.		
WiMAX gemäß den vom ETSI veröffentlichten WiMAX-Nor- men, insbesondere EN 301908-1, EN 301908-21 und EN 301908-22	Frequenzabstand von mindestens 200 kHz zwischen dem WiMAX-Kanalrand und dem Kanalrand der GSM-Trägerfrequenz zwischen einem WiMAX-Netz und einem benachbarten GSM-Netz Kein Frequenzabstand ist notwendig zwischen dem Wi-	31. Dezember 2011"	
	MAX-Kanalrand und dem Kanalrand der UMTS-Trägerfrequenz zwischen einem WiMAX-Netz und einem benachbarten UMTS-Netz.		
	3. Kein Frequenzabstand ist notwendig zwischen WiMAX-Kanalrändern zwischen zwei benachbarten WiMAX-Netzen.		

Anhang F.7

zu den Nutzungsbedingungen im Verfahren betreffend Frequenzzuteilungen in den Frequenzbereichen 800 MHz, 900 MHz und 1800 MHz:

Vorzugsfrequenzabkommen 900 MHz 1

AGREEMENT

between the telecommunications administrations of

Austria, Croatia, the Czech Republic, Hungary, the Slovak Republic and Slovenia

concerning the allotment of preferential frequency blocks in the band 890 - 914/935 - 959 MHz

Vienna, September 30th, 1994

-2-

- Administrations parties hereto agree to allot the frequency band 890 - 914/935 - 959 MHz in preferential frequency blocks as given in Annex 1.
- 2. Administrations shall apply for planning and coordination the conditions of CEPT-Rec. T/R 20-08.
- 3. The frequencies of the GSM channels (Annex 2) have the following values:

890.2 + 0.2 (n - 1) MHz

for 1 < n < 124

935.2 + 0.2 (n - 1) MHz

- 4. For special areas with high traffic density Administrations may conclude bi- or multilaterally special agreements diverging from the distribution of preferential frequency blocks as given in Annex 1.
- 5. In addition to the allotment of preferential frequency blocks given in Annex 1 Austria can use with the technical criteria of the "Hexagonplan" all 600 channels (25 kHz) in the Hexagon of Vienna and the analogue organisation channels (23-43) in the border areas to the Czech Republic and the Slovak Republic in the existing analogue mobile cellular system (TACS).
- 6. By using more than one analogue channel in one preferential GSM channel of a neighbouring country the power of this analogue channel shall be set in such a way that the resulting field strength in 3m height above ground doesn't exceed 19 dB μ V/m at the border.

For the Administration of Austria:

G. Lettner

For the Administration of Croatia:

M. Zadro

For the Administration of the Czech Republic:

Novotny

For the Administration of Hungary:

" Brikentiere

A. Birkenheuer

For the Administration of the Slovak Republic

V. Podhorsky

For the Administration of Slovenia:

I. Lampe

Ø 005

_ ·	120 118 (20 172 (774	(£0 C7 ((20 CT1	(20 CT4	021 CZ1	CTT	(RO C77	415 119 (20 CT1	200 H
, , , , , , , , , , , , , , , , , , ,	189 (20 169 (20 CT	119 (20	CZE	811	118 118	HNG IN CT	HING HING	< 1	Mary Mary Mary Mary
Page	(1) (10) (10) (10) (10) (10) (10) (10) (CER	102 103 C;	SVK	SVK 408 109		408 4	29 94 NV 49 101 NV 49 18	W 184
S	8	86 46 36	SVK	86 66	25/167	90 400	% 97	NVS 4	8
ana	80 14 90	100		3	SIK 14184	AUT	HNG	7 38 5	96
SM b	# 5 M	AUT	19 80 AUT 50 91		SOK 1419 95		SVK 19 80 84 85	80 AUT 39	28
9	AVT 19180	13 80	200	8	2	20 80	79 8	2	Si BO
nth	T		AUT		64 - AUT	AUT WALL	HNG	LO AUT	2
ys r	2 A	So AUT	33	AUT NO	63 64	Co Co	09		100 58 08 58 08 50 09 50 09 50 09
ploc	54 85		w	W. Carrie	51 HNG 63	8	59	5 54 SVN	35
hous	50 C2E 66 S4	49 50	CZE	K 49 50		HNG	SVK	1NG 53	3 5
eg ue	4045	39 40 CRE 49	30 40:41	28 40 SVK 49	VS 040	39 40	88 40	07	40 04 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
91	4 38 D	39	30	96	HN6 34			HNG	7
ntia	32	CRE	SVK	SVK	27 48	HNA	19 60 HNG	26 27	25
Preferential & equency blocks in the GSM bands	25			8	13 14 SVK 27 28 HNG 39 40 SVK 50	10 24	19 80	SVN	8
Pre		413	\$ %	AR 43	43 14		~	48 (4	4
	1 AUT 25 36 D 38 40 15 15 59 15 D	AUT	AUT	AUT AR 43	₩.	AUT	, SVK	AUT	months of the state of the stat
	1 -0),E	/svk	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/HN6/	J 5 NH	SVK		
	AUT/CRE/D (MINIMUM MINIMUM MIN	AUT/CZE WINGINGTON	AUT/CZE/SVK	AUT/SVIK	4UT/SVK/HNG/ AUT AS	AUT/HNG	HNG/SVK	AUT/HNG/CON WILLEST 10 500 40 HNG	
	Ť	*	7		4				

'01 FR 12:20	FAX +43 1				<u>.</u>	العدا		₩2006 Ξ
120 111 111 111 111 111 111 111 111 111	C77	C7.1		0	120 C7		19 180	/20
MAG IR	_ 11	HNG	- 1 1	HR		100	,	10 m
इ. इ	5		100	5VV 105. 4	100	108		100 and
SV AVS	66	36	66	43 44		SVK		8
2 2		HRV		AUT.			0	a5 90
080		08 65	08	79 80		77.	79 8	80
2 4 E	.	HRV,		4 AUT	HRV	12 N		2 2
2 >	A S	89 69	Ŧ	79				2
09 1/\S		SVN	09 6	SVN	50 C			09
3 54	1 1	3 54		\$ 5¢	>	57 71		3 +
50 111111111111111111111111111111111111	SV	1 1	HNG	HRV	SV			\$\$
40	04		40	049	0 40	9	07	3 + + + + + + + + + + + + + + + + + + +
16.30		6 39	- 11	18V 36	. 11	1 1	36	8 + 1
30 H	SVA	TH.	HNG	27	NVE	- 11		05
372	73	36	77	2	7	45 8		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 7 2	30	NS A	40	5	70			201
		13	≥	2	8	S X		2 + + + + + + + + + + + + + + + + + + +
WG A	AUT	HRV		AUT				10 6 80 25 30 35 40 45 HILLIAN
	-	N/S	¥K<	/HRV	NVS	SVK		
6/sv	/SVI	/HRV/	Na/I	Ms/	1RV/	, 2E/	•	
¥	401	MG,	I	AUT	7	V		•
	5 V N 26 27 HNG 30 40 HNG 53 54 SVN 75 NO 86 86 86 86 87 100 NO 1	HAG SON LE 27 HING 30 40 SVN 59 AUT FO BO AUT 99 KING 110 110 110 110 110 110 110 110 110 11	HNG 13 14 SVN 36 43 HNG 39 40 HNG 53 51 SVN 67 68 HRV 79 90 HRV 93 94 106 407 HNG CTT	HRV 13 14 SVN 30 40 HVG 53 54 SVN 67 68 HRV 79 80 HRV 99 94 HVG 119 120 HRV 12 14 SVN 30 40 HVG 53 54 SVN 67 68 HRV 79 80 HRV 93 94 HVG 119 120 HRV 12 14 SVN 30 40 HVG 53 54 SVN 67 68 HRV 79 80 HRV 93 94 HVG 119 120 HRV 12 14 SVN 30 40 HVG 53 54 SVN 67 68 HRV 79 80 HRV 99 94 TO HVG 119 120 HRV 12 14 SVN 30 40 HVG 53 54 SVN 67 68 HRV 79 80 HRV 99 94 TO HVG 119 120	HRV 13 44 SVN 36 27 HNG 39 40 HNG 53 54 SVN 67 68 HRV 79 80 HRV 93 94 50 HNG 118 120 HRV 13 44 SVN 36 27 HNG 39 40 HNG 53 54 SVN 67 68 HRV 79 80 HRV 93 94 50 HNG 118 120 HRV 13 44 SVN 36 27 HRV 39 40 HNG 53 54 SVN 67 68 HRV 79 80 HRV 93 94 50 HRV 93	HAVE AS VN 26 27 HNG 39 40 HNG 53 54 SVN 67 68 HRV 99 94 HRV 99 400 SVN 119 120 HRV 13 44 SVN 26 27 HNG 39 40 HNG 53 54 SVN 67 68 HRV 99 94 SVN 118 120 HRV 20 44 SVN 36 37 HNG 39 40 HNG 53 56 SVN 67 68 HRV 99 94 500 SVN 118 120 HRV 40 40 44 SVN 36 40 SVN 59 60 HRV 72 80 HRV 99 40 SVN 118 120 HRV 40 40 44 SVN 36 40 SVN 59 60 HRV 72 80 HRV 99 40 SVN 118 120 HRV 40 40 44 SVN 36 40 SVN 59 60 HRV 72 80 HRV 99 40 SVN 118 120 HRV 40 40 44 SVN 36 40 SVN 59 60 HRV 72 80 HRV 99 400 SVN 118 120 HRV 40 40 44 SVN 36 40 SVN 59 60 HRV 72 80 HRV 99 400 SVN 118 120 HRV 40 40 44 SVN 36 40 SVN 59 60 HRV 72 80 40 HRV 99 400 SVN 118 120 HRV 40 40 44 SVN 36 40 SVN 59 60 HRV 72 80 HRV 99 400 SVN 118 120 HRV 40 40 44 SVN 59 40 SVN 59 60 HRV 72 80 HRV 99 400 SVN 118 120 HRV 40 40 44 SVN 59 40 SVN 59 60 HRV 72 80 40 HRV 99 400 SVN 118 120 HRV 40 40 44 SVN 50 40 SVN 59 60 HRV 72 80 60 HRV 99 400 SVN 118 120 HRV 40 40 44 SVN 50 40 SVN 59 60 HRV 72 80 60 HRV 72 80 60 HRV 99 400 SVN 118 120 HRV 40 40 40 40 50 50 50 50 50 50 50 50 50 50 50 50 50	HRV	HRV

Annex 2

TABLE OF FREQUENCY - CHANNEL NUMBER 890-914/935-959 MHz - 200 kHz

		1 05 10			Ch NO		-	1 Ch NO
	Frequency	I Ch. NO		requency	Ch. NO	200	Frequency	Ch. NO
890.2	935.2	1	898.2	1943.2	41	906.2	951.2	81
890.4	935,4	2	898.4	943.4	42	906.4	951.4	82
890.6	935.6	3	898,6	943.6	43	906.6	951.6	63
890.8	935.8	4	898.8	943.8	44	906.8	951.8	84
891	936	5	699	944	45	907	952	85
891.2	936.2	6	899.2	944.2	46	907.2	952.2	86
891.4	936.4	7	899.4	944.4	47	907.4	952.4	87
891.6	936.6	8	899.6	944,6	48	907.6	952.6	_88
891.8	936,8	9	899.8	944.8	49	907.8	952.8	89
89 2	937	10	900	945	50	908	953	90
892.2	937.2	11	900.2	945.2	51	908.2	953.2	91
892.4	937.4	12	900.4	945.4	52	908.4	953.4	92
892.6	937.6	13	900.6	945.6	53	908.6	953.6	93
892.6	937.8	14	900.8	945.8	54	908.8	953.8	94
893	938	15	901	946	55	909	954	96
893.2	938.2	16	901.2	946.2	56	909.2	954.2	96
893 4	938,4	17	901.4	946,4	57	909.4	954.4	97
893.6	939.6	18	901.6	946.6	58	909.6	954.6	98
893.8	938,8	19	901.8	946.8	59	909.8	954.8	99
894	939	20	902	947	60	910	955	100
894.2	939.2	21	902.2	947.2	61	910.2	955.2	101
894.4	939.4	22	902.4	947.4	62	910.4	955.4	102
894.6	939.6	23	902.6	947.6	63	910.6	955.6	103
894.8	939.8	24	902.8	947.8	64	910.8	955.8	103
895	940	25	903	948	65	911	1956	105
895.2	940.2	26	903.2	948.2	65	911.2	956.2	106
895.4	940.4	27	903.4	948.4	67	911.4	956.4	107
895.6	940.6	28	903.6	948,6	68	911.6	956.6	108
895.B	1940.8	29	903.8	1948.8	69	911.8	956.8	109
896	941	30	904	1949	70	912	957	110
896.2	941.2	31	904.2	1949.2	171	912.2	957.2	111
896.4	[941.4	32	904.4	1949.4	72	912.4	957.4	112
B96.6	941.6	33	904.6	949.6	73	912.6	1957.6	113
696.8	1941,8	34	904.8	949.B	74	912.8	957.8	114
B97	1942	35	905	950	75	913	958	115
897.2	1942.2	36	905.2	1950.2	75	913.2	1958.2	116
897.4	942.4	37	905.4	950.4	77	913.4	958.4	117
897.6	942.6	38	905.6	950.6	78	913.6	958.6	118
897.8	942.8	39						119
			1305.5	1950.8	79	913.8	1958.6	
			905.8	950.8	79	913.8	959.8	1113
898	943	40	906	950.8	79	913.8	958,8	113
				950.8		913.8	958.8	113
				950.8		913.8	958.8	
				950.8		913.8	958.8	
				951			958.8	
				950.8			958.8	
				950.8			958.8	
				950.8			958.8	
				950.8			958.8	
				950.8			958.8	
				950.8			958.8	
				950.8			958.8	
				950.8			958.8	
				950,8			958.8	
				950.8			958.8	
				950.8			958.8	
				950.8			958.8	
				950.8			959.8	
				950.8			958.8	
				950.8			958.8	
				950.8			958.8	
				950.8			958.8	
				950.8			958.8	
				950.8			958.8	
				950.8			958.8	
				950.8			958.8	
				950.8			958.8	
				950.8			958.8	
				950.8			958.8	
				950.8			959.8	
				950.8			959.8	
				950.8			958.8	
				950.8			959.8	
				950.8			959.8	
				950.8			959.8	
				950.8			959.8	
				950.8			958.8	
				950.8			959.8	
				950.8			959.8	
				950.8			959.8	
				950.8			959.8	

Anhang F.8

zu den Nutzungsbedingungen im Verfahren betreffend Frequenzzuteilungen in den Frequenzbereichen 800 MHz, 900 MHz und 1800 MHz:

Vorzugsfrequenzabkommen 900 MHz 2

AGREEMENT

between the administrations of Austria, the Czech Republic, Hungary and the Slovak Republic

on the frequency coordination in the frequency bands 880 – 890/925 - 935 MHz (E-GSM)

1. Introduction

In the framework of the "Vienna Agreement (Berlin 2001)" the Administrations of Austria, the Czech Republic, Hungary and the Slovak Republic concluded this Agreement for the purpose of the frequency coordination for GSM systems in the frequency bands 880 - 890/925 - 935 MHz as a supplementary agreement to the Agreement Vienna, 30th Sept. 1994. The relevant provisions of the "Vienna Agreement (Berlin 2001)" and CEPT Rec. T/R 20-08 shall be applied unless otherwise laid down in this agreement.

2. Principles - Background

- 2.1 The Administrations mentioned above deemed it necessary to conclude an agreement on the allotment of the preferential frequencies for GSM systems in the frequency bands 880 890/925 935 MHz. The channel arrangement used in this agreement is in conformity with I-ETS 300 609-1 and shown in Annex 1.
- 2.2 Operators shall have the possibility to cooperate in order to minimise interference and to achieve the most efficient use of the available spectrum. Therefore the provisions laid down in the "Agreement between administrations concerned regarding the approval of arrangements between operators" shall be applied.

3. Technical provisions

- 3.1 The preferential frequency partitioning is described in Annex 2.
- 3.2 Preferential frequencies may be used without coordination with a neighbouring country if the fieldstrength of each carrier produced by the base station does not exceed a value of 19 dBµV/m at a height of 3 m above ground at a distance of 15 km inside the neighbouring country.
- 3.3 Non preferential frequencies may be used without coordination with a neighbouring country if the fieldstrength of each carrier produced by the base station does not exceed a value of 19 dBµV/m at a height of 3 m above ground at the border line.

4. Exchange of information

Notifications of base stations will be exchanged on explicit request of an administration only.

5. Procedure in case of harmful interference

In case of harmful interference the Administrations affected shall inform each other and endeavour to achieve mutually satisfactory solution.

6. Revision of this agreement

This Agreement can be revised in light of administrative, regulatory or technical developments at the proposal of any Signatory Administration with the agreement of all other Signatory Administrations.

7. Withdrawal from this Agreement

Any Administration may withdraw from this Agreement by the end of a calendar month by giving notice of its intention at least six months in advance. A declaration to that effect shall be addressed to the handling administration of the "Vienna Agreement (Berlin 2001)". Frequency assignments notified within the framework of this Agreement prior to the date of entry into force of the withdrawal shall remain valid and be protected according to their status.

8. Language of the Agreement

The original text of this Agreement exists in English and is retained at the handling administration of the "Vienna Agreement (Berlin 2001)".

9. Date of entry into force of the Agreement

This Agreement enters into force for the Administrations of Austria, Hungary and Slovakia at the date of its signature.

For the Czech Administration this Agreement will enter into force after its announcement. In the meantime the Administrations of Austria and Slovakia can use all frequencies in the bands 880 - 890/925 - 935 MHz on the basis of non-prefential frequencies (see Item 3.3).

For the Austrian Administration

For the Czech Administration

For the Hungarian Administration

For the Slovak Administration

u 12,12.2001

-

16.01.2002. (514 Zolban)

frm 12:12:2001

(P. Sobolič)

(M. Rosa)

TABLE OF FREQUENCY - CHANNEL NUMBER 880 - 890/925 - 935 MHz

Ch. NO	Frequency							
975	880,2	925,2						
976	880,4	925,4						
977	880,6	925,6						
978	880,8	925,8						
979	881	926						
980	881,2	926,2						
981	881,4	926,4						
982	881,6	926,6						
983	881,8	926,8						
984	882	927						
985	882,2	927,2						
		927,2						
986	882,4							
987	882,6	927,6						
988	882,8	927,8						
989	883	928						
990	883,2	928,2						
991	883,4	928,4						
992	883,6	928,6						
993	883,8	928,8						
994	884	929						
995	884,2	929,2						
996	884,4	929,4						
997	884,6	929,6						
998	884,8	929,8						
999	885	930						
1000	885,2	930,2						
1001	885,4	930,4						
1002	885,6	930,6						
1003	885,8	930,8						
1004	886	931						
1005	886,2	931,2						
1006	886,4	931,4						
1007	886,6	931,6						
1008	886,8	931,8						
1009	887	932						
1010	887,2	932,2						
1011	887,4	932,4						
1012	887,6	932,6						
1013	887,8	932,8						
1014	888	933						
1015	888,2	933,2						
1016	888,4	933,4						
1017	888,6	933,6						
1018	888,8	933,8						
1019	889	934						
1020	889,2	934,2						
1021	889,4	934,4						
1022	889,6	934,6						
1023	889,8	934,8						
1023		9,04,0						

$$FI(n) = 890 + 0.2(n - 1024) MHz$$

$$Fu(n) = FI(n) + 45 MHz$$

Proposal for the preferential frequency partitioning in the E-GSM band

Anhang F.9

zu den Nutzungsbedingungen im Verfahren betreffend Frequenzzuteilungen in den Frequenzbereichen 800 MHz, 900 MHz und 1800 MHz:

Vorzugsfrequenzabkommen 900 MHz 3

AGREEMENT

between the administrations of Austria, Hungary and Slovenia

on the frequency coordination in the frequency bands 880 – 890/925 - 935 MHz (E-GSM)

1. Introduction

In the framework of the "Vienna Agreement (Berlin 2001)" the Administrations of Austria, , Hungary and Slovenia concluded this Agreement for the purpose of the frequency coordination for GSM systems in the frequency bands 880 - 890/925 - 935 MHz as a supplementary agreement to the Agreement Vienna, 30th Sept. 1994. The relevant provisions of the "Vienna Agreement (Berlin 2001)" and CEPT Rec. T/R 20-08 shall be applied unless otherwise laid down in this agreement.

2. Principles - Background

- 2.1 The Administrations mentioned above deemed it necessary to conclude an agreement on the allotment of the preferential frequencies for GSM systems in the frequency bands 880 890/925 935 MHz. The channel arrangement used in this agreement is in conformity with I-ETS 300 609-1 and shown in Annex 1.
- 2.2 Operators shall have the possibility to cooperate in order to minimise interference and to achieve the most efficient use of the available spectrum. Therefore the provisions laid down in the "Agreement between administrations concerned regarding the approval of arrangements between operators" shall be applied.

3. Technical provisions

- 3.1 The preferential frequency partitioning is described in Annex 2.
- 3.2 Preferential frequencies may be used without coordination with a neighbouring country if the fieldstrength of each carrier produced by the base station does not exceed a value of 19 dB μ V/m at a height of 3 m above ground at a distance of 15 km inside the neighbouring country.
- 3.3 Non preferential frequencies may be used without coordination with a neighbouring country if the fieldstrength of each carrier produced by the base station does not exceed a value of 19 dB μ V/m at a height of 3 m above ground at the border line.

4. Exchange of information

Notifications of base stations will be exchanged on explicit request of an administration only.

5. Procedure in case of harmful interference

In case of harmful interference the Administrations affected shall inform each other and endeavour to achieve a mutually satisfactory solution.

6. Revision of this agreement

This Agreement can be revised in light of administrative, regulatory or technical developments at the proposal of any Signatory Administration with the agreement of all other Signatory Administrations.

7. Withdrawal from this Agreement

Any Administration may withdraw from this Agreement by the end of a calendar month by giving notice of its intention at least six months in advance. A declaration to that effect shall be addressed to the handling administration of the "Vienna Agreement (Berlin 2001)". Frequency assignments made within the framework of this Agreement prior to the date of entry into force of the withdrawal shall remain valid and be protected according to their status.

8. Language of the Agreement

This Agreement has been concluded in the english language and in one original which is retained at the handling administration of the Vienna Agreement (Berlin 2001).

9. Date of entry into force of the Agreement

This Agreement enters into force at the date of its signature.

For the Austrian Administration

For the Hungarian Administration

For the Slovenian Administration

Dr. G. Demendi) 37.02.2001

05.02.2 (I. Lampe)

3

TABLE OF FREQUENCY - CHANNEL NUMBER 880 - 890/925 - 935 MHz

975 880,2 925,2 976 880,4 925,4 977 880,6 925,6 978 880,8 925,8 979 881 926 980 881,2 926,2 981 881,4 926,4 982 881,6 926,6 983 881,8 926,8 984 882 927 985 882,2 927,2 986 882,4 927,4 987 882,6 927,6 988 882,8 927,8 989 883 928 990 883,2 928,2 991 883,4 928,4 992 883,6 928,6 993 883,8 928,8 994 884 929 995 884,2 929,2 996 884,4 929,6 998 885 930 1000 885,2 930,2	Ch. NO	Freq	uency					
976 880,4 925,4 977 880,6 925,6 978 880,8 925,8 979 881 926 980 881,2 926,2 981 881,4 926,4 982 881,6 926,6 983 881,8 926,8 984 882 927 985 882,2 927,2 986 882,4 927,4 987 882,6 927,6 988 882,8 927,8 989 883 928 990 883,2 928,2 991 883,4 928,4 992 883,6 928,6 993 883,8 928,8 994 884 929 995 884,2 929,2 996 884,4 929,4 997 884,6 929,6 998 885 930 1000 885,2 930,2		_						
977 880,6 925,6 978 880,8 925,8 979 881 926 980 881,2 926,2 981 881,4 926,4 982 881,6 926,6 983 881,8 926,8 984 882 927 985 882,2 927,2 986 882,4 927,4 987 882,6 927,6 988 882,8 927,8 989 883 928 990 883,2 928,2 991 883,4 928,4 992 883,6 928,6 993 883,8 928,8 994 884 929 995 884,2 929,2 996 884,4 929,4 997 884,6 929,6 998 885 930 1000 885,2 930,2 1001 885,6 930,6 <td></td> <td></td> <td></td>								
978 880,8 925,8 979 881 926 980 881,2 926,2 981 881,4 926,4 982 881,6 926,6 983 881,8 926,8 984 882 927 985 882,2 927,2 986 882,4 927,4 987 882,6 927,6 988 882,8 927,8 989 883 928 990 883,2 928,2 991 883,4 928,4 992 883,6 928,6 993 883,8 928,8 994 884 929 995 884,2 929,2 996 884,4 929,4 997 884,6 929,6 998 885 930 1000 885,2 930,2 1001 885,4 930,4 1002 885,6 930,6 <td></td> <td></td> <td></td>								
979 881 926 980 881,2 926,2 981 881,4 926,4 982 881,6 926,6 983 881,8 926,8 984 882 927 985 882,2 927,2 986 882,4 927,4 987 882,6 927,6 988 882,8 927,8 989 83 928 990 883,2 928,2 991 883,4 928,4 992 883,6 928,6 993 883,8 928,8 994 884 929 995 884,2 929,2 996 884,4 929,4 997 884,6 929,6 998 885 930 1000 885,2 930,2 1001 885,4 930,4 1002 885,6 930,8 1004 886 931								
980 881,2 926,2 981 881,4 926,4 982 881,6 926,6 983 881,8 926,8 984 882 927 985 882,2 927,2 986 882,4 927,4 987 882,6 927,6 988 882,8 927,8 989 883 928,2 991 883,4 928,4 992 883,6 928,6 993 883,8 928,8 994 884 929 995 884,2 929,2 996 884,4 929,4 997 884,6 929,6 998 885 930 1000 885,2 930,2 1001 885,4 930,4 1002 885,6 930,6 1003 885,8 931,2 1006 886,2 931,2 1006 886,4 931,4 <td></td> <td></td> <td></td>								
981 881,4 926,4 982 881,6 926,6 983 881,8 926,8 984 882 927 985 882,2 927,2 986 882,4 927,4 987 882,6 927,6 988 882,8 927,8 989 883 928 990 883,2 928,2 991 883,4 928,4 992 883,6 928,6 993 883,8 928,8 994 884 929 995 884,2 929,2 996 884,4 929,4 997 884,6 929,6 998 885 930 1000 885,2 930,2 1001 885,4 930,4 1002 885,6 930,6 1003 885,8 930,8 1004 886 931 1005 886,2 931,2								
982 881,6 926,6 983 881,8 926,8 984 882 927 985 882,2 927,4 987 882,6 927,6 988 882,8 927,8 989 883 928,2 991 883,4 928,4 992 883,6 928,6 993 883,8 928,8 994 884 929 995 884,2 929,2 996 884,4 929,4 997 884,6 929,6 998 885 930 1000 885,2 930,2 1001 885,4 930,4 1002 885,6 930,6 1003 885,8 930,8 1004 886 931 1005 886,2 931,2 1006 886,4 931,4 1007 886,6 931,6 1008 886,8 931,8								
983 881,8 926,8 984 882 927 985 882,2 927,2 986 882,4 927,4 987 882,6 927,6 988 882,8 927,8 989 883 928 990 883,2 928,2 991 883,4 928,4 992 883,6 928,6 993 883,8 928,8 994 884 929 995 884,2 929,2 996 884,4 929,4 997 884,6 929,6 998 884,8 929,8 999 885 930,2 1001 885,2 930,2 1001 885,4 930,4 1002 885,6 930,8 1004 886 931,2 1006 886,2 931,2 1006 886,4 931,4 1007 886,6 931,6								
984 882 927 985 882,2 927,2 986 882,4 927,4 987 882,6 927,6 988 882,8 927,8 989 883 928 990 883,2 928,2 991 883,4 928,4 992 883,6 928,6 993 883,8 928,8 994 884 929 995 884,2 929,2 996 884,4 929,4 997 884,6 929,6 998 885,2 930,2 1001 885,2 930,2 1001 885,4 930,4 1002 885,6 930,6 1003 885,8 930,8 1004 886 931 1005 886,2 931,2 1006 886,4 931,4 1007 886,6 931,6 1008 886,8 931,8 <td></td> <td></td> <td></td>								
985 882,2 927,2 986 882,4 927,4 987 882,6 927,6 988 882,8 927,8 989 883 928 990 883,2 928,2 991 883,4 928,4 992 883,6 928,6 993 883,8 928,8 994 884 929 995 884,2 929,2 996 884,4 929,4 997 884,6 929,6 998 884,8 929,8 999 885 930,2 1001 885,2 930,2 1001 885,4 930,4 1002 885,6 930,6 1003 885,8 930,8 1004 886 931,2 1006 886,4 931,4 1007 886,6 931,6 1008 886,8 931,8 1009 887 932,2<								
986 882,4 927,4 987 882,6 927,6 988 882,8 927,8 989 883 928 990 883,2 928,2 991 883,4 928,4 992 883,6 928,6 993 883,8 928,8 994 884 929 995 884,2 929,2 996 884,4 929,4 997 884,6 929,6 998 885 930 1000 885,2 930,2 1001 885,4 930,4 1002 885,6 930,6 1003 885,8 930,8 1004 886 931 1005 886,2 931,2 1006 886,4 931,4 1007 886,6 931,8 1009 887 932 1010 887,2 932,2 1011 887,4 932,4								
987 882,6 927,6 988 882,8 927,8 989 883 928 990 883,2 928,2 991 883,4 928,4 992 883,6 928,6 993 883,8 928,8 994 884 929 995 884,2 929,2 996 884,4 929,4 997 884,6 929,6 998 885,2 930,2 1001 885,2 930,2 1001 885,4 930,4 1002 885,6 930,6 1003 885,8 930,8 1004 886 931 1005 886,2 931,2 1006 886,4 931,4 1007 886,6 931,8 1009 887 932 1010 887,2 932,2 1011 887,4 932,4 1012 887,6 932,6								
988 882,8 927,8 989 883 928 990 883,2 928,2 991 883,4 928,4 992 883,6 928,6 993 883,8 928,8 994 884 929 995 884,2 929,2 996 884,4 929,4 997 884,6 929,6 998 884,8 929,8 999 885 930,2 1001 885,4 930,2 1001 885,4 930,4 1002 885,6 930,6 1003 885,8 930,8 1004 886 931 1005 886,2 931,2 1006 886,4 931,4 1007 886,6 931,6 1008 886,8 931,8 1009 887 932,2 1011 887,4 932,4 1012 887,6 932,6								
989 883 928 990 883,2 928,2 991 883,4 928,4 992 883,6 928,6 993 883,8 928,8 994 884 929 995 884,2 929,2 996 884,4 929,4 997 884,6 929,6 998 884,8 929,8 999 885 930 1000 885,2 930,2 1001 885,4 930,4 1002 885,6 930,6 1003 885,8 930,8 1004 886 931 1005 886,2 931,2 1006 886,4 931,4 1007 886,6 931,6 1008 886,8 931,8 1009 887 932,2 1011 887,4 932,4 1012 887,6 932,6 1013 887,8 932,8<								
990 883,2 928,2 991 883,4 928,4 992 883,6 928,6 993 883,8 928,8 994 884 929 995 884,2 929,2 996 884,4 929,4 997 884,6 929,6 998 884,8 929,8 999 885 930 1000 885,2 930,2 1001 885,4 930,4 1002 885,6 930,6 1003 885,8 930,8 1004 886 931 1005 886,2 931,2 1006 886,4 931,4 1007 886,6 931,6 1008 886,8 931,8 1009 887 932 1010 887,2 932,2 1011 887,4 932,4 1012 887,6 932,6 1013 887,8 932								
991 883,4 928,4 992 883,6 928,6 993 883,8 928,8 994 884 929 995 884,2 929,2 996 884,4 929,4 997 884,6 929,6 998 884,8 929,8 999 885 930 1000 885,2 930,2 1001 885,4 930,4 1002 885,6 930,6 1003 885,8 930,8 1004 886 931 1005 886,2 931,2 1006 886,4 931,4 1007 886,6 931,6 1008 886,8 931,8 1009 887 932 1010 887,2 932,2 1011 887,4 932,6 1013 887,8 932,6 1014 888 933 1015 888,2 933,2<								
992 883,6 928,6 993 883,8 928,8 994 884 929 995 884,2 929,2 996 884,4 929,4 997 884,6 929,6 998 884,8 929,8 999 885 930 1000 885,2 930,2 1001 885,4 930,4 1002 885,6 930,6 1003 885,8 930,8 1004 886 931 1005 886,2 931,2 1006 886,4 931,4 1007 886,6 931,6 1008 886,8 931,8 1009 887 932 1010 887,2 932,2 1011 887,4 932,4 1012 887,6 932,6 1013 887,8 932,8 1014 888 933 1015 888,2 933,2		· · · · · · · · · · · · · · · · · · ·						
993 883,8 928,8 994 884 929 995 884,2 929,2 996 884,4 929,4 997 884,6 929,6 998 884,8 929,8 999 885 930 1000 885,2 930,2 1001 885,4 930,4 1002 885,6 930,6 1003 885,8 930,8 1004 886 931 1005 886,2 931,2 1006 886,4 931,4 1007 886,6 931,6 1008 886,8 931,8 1009 887 932 1010 887,2 932,2 1011 887,4 932,4 1012 887,6 932,6 1013 887,8 932,8 1014 888 933 1015 888,2 933,2		<u> </u>						
994 884 929 995 884,2 929,2 996 884,4 929,4 997 884,6 929,6 998 884,8 929,8 999 885 930 1000 885,2 930,2 1001 885,4 930,4 1002 885,6 930,6 1003 885,8 930,8 1004 886 931 1005 886,2 931,2 1006 886,4 931,4 1007 886,6 931,6 1008 886,8 931,8 1009 887 932 1010 887,2 932,2 1011 887,4 932,4 1012 887,6 932,6 1013 887,8 932,8 1014 888 933 1015 888,2 933,2								
995 884,2 929,2 996 884,4 929,4 997 884,6 929,6 998 884,8 929,8 999 885 930 1000 885,2 930,2 1001 885,4 930,4 1002 885,6 930,6 1003 885,8 930,8 1004 886 931 1005 886,2 931,2 1006 886,4 931,4 1007 886,6 931,6 1008 886,8 931,8 1009 887 932 1010 887,2 932,2 1011 887,4 932,4 1012 887,6 932,6 1013 887,8 932,8 1014 888 933 1015 888,2 933,2								
996 884,4 929,4 997 884,6 929,6 998 884,8 929,8 999 885 930 1000 885,2 930,2 1001 885,4 930,4 1002 885,6 930,6 1003 885,8 930,8 1004 886 931 1005 886,2 931,2 1006 886,4 931,4 1007 886,6 931,6 1008 886,8 931,8 1009 887 932 1010 887,2 932,2 1011 887,4 932,4 1012 887,6 932,6 1013 887,8 932,8 1014 888 933 1015 888,2 933,2								
997 884,6 929,6 998 884,8 929,8 999 885 930 1000 885,2 930,2 1001 885,4 930,4 1002 885,6 930,6 1003 885,8 930,8 1004 886 931 1005 886,2 931,2 1006 886,4 931,4 1007 886,6 931,6 1008 886,8 931,8 1009 887 932 1010 887,2 932,2 1011 887,4 932,4 1012 887,6 932,6 1013 887,8 932,8 1014 888 933 1015 888,2 933,2								
998 884,8 929,8 999 885 930 1000 885,2 930,2 1001 885,4 930,4 1002 885,6 930,6 1003 885,8 930,8 1004 886 931 1005 886,2 931,2 1006 886,4 931,4 1007 886,6 931,6 1008 886,8 931,8 1009 887 932 1010 887,2 932,2 1011 887,4 932,4 1012 887,6 932,6 1013 887,8 932,8 1014 888 933 1015 888,2 933,2								
999 885 930 1000 885,2 930,2 1001 885,4 930,4 1002 885,6 930,6 1003 885,8 930,8 1004 886 931 1005 886,2 931,2 1006 886,4 931,4 1007 886,6 931,6 1008 886,8 931,8 1009 887 932 1010 887,2 932,2 1011 887,4 932,4 1012 887,6 932,6 1013 887,8 932,8 1014 888 933 1015 888,2 933,2								
1000 885,2 930,2 1001 885,4 930,4 1002 885,6 930,6 1003 885,8 930,8 1004 886 931 1005 886,2 931,2 1006 886,4 931,4 1007 886,6 931,6 1008 886,8 931,8 1009 887 932 1010 887,2 932,2 1011 887,4 932,4 1012 887,6 932,6 1013 887,8 932,8 1014 888 933 1015 888,2 933,2								
1001 885,4 930,4 1002 885,6 930,6 1003 885,8 930,8 1004 886 931 1005 886,2 931,2 1006 886,4 931,4 1007 886,6 931,6 1008 886,8 931,8 1009 887 932 1010 887,2 932,2 1011 887,4 932,4 1012 887,6 932,6 1013 887,8 932,8 1014 888 933 1015 888,2 933,2			<u> </u>					
1002 885,6 930,6 1003 885,8 930,8 1004 886 931 1005 886,2 931,2 1006 886,4 931,4 1007 886,6 931,6 1008 886,8 931,8 1009 887 932 1010 887,2 932,2 1011 887,4 932,4 1012 887,6 932,6 1013 887,8 932,8 1014 888 933 1015 888,2 933,2								
1003 885,8 930,8 1004 886 931 1005 886,2 931,2 1006 886,4 931,4 1007 886,6 931,6 1008 886,8 931,8 1009 887 932 1010 887,2 932,2 1011 887,4 932,4 1012 887,6 932,6 1013 887,8 932,8 1014 888 933 1015 888,2 933,2			·					
1004 886 931 1005 886,2 931,2 1006 886,4 931,4 1007 886,6 931,6 1008 886,8 931,8 1009 887 932 1010 887,2 932,2 1011 887,4 932,4 1012 887,6 932,6 1013 887,8 932,8 1014 888 933 1015 888,2 933,2								
1005 886,2 931,2 1006 886,4 931,4 1007 886,6 931,6 1008 886,8 931,8 1009 887 932 1010 887,2 932,2 1011 887,4 932,4 1012 887,6 932,6 1013 887,8 932,8 1014 888 933 1015 888,2 933,2								
1006 886,4 931,4 1007 886,6 931,6 1008 886,8 931,8 1009 887 932 1010 887,2 932,2 1011 887,4 932,4 1012 887,6 932,6 1013 887,8 932,8 1014 888 933 1015 888,2 933,2								
1007 886,6 931,6 1008 886,8 931,8 1009 887 932 1010 887,2 932,2 1011 887,4 932,4 1012 887,6 932,6 1013 887,8 932,8 1014 888 933 1015 888,2 933,2	-							
1008 886,8 931,8 1009 887 932 1010 887,2 932,2 1011 887,4 932,4 1012 887,6 932,6 1013 887,8 932,8 1014 888 933 1015 888,2 933,2								
1009 887 932 1010 887,2 932,2 1011 887,4 932,4 1012 887,6 932,6 1013 887,8 932,8 1014 888 933 1015 888,2 933,2	$\overline{}$							
1010 887,2 932,2 1011 887,4 932,4 1012 887,6 932,6 1013 887,8 932,8 1014 888 933 1015 888,2 933,2								
1011 887,4 932,4 1012 887,6 932,6 1013 887,8 932,8 1014 888 933 1015 888,2 933,2								
1012 887,6 932,6 1013 887,8 932,8 1014 888 933 1015 888,2 933,2								
1013 887,8 932,8 1014 888 933 1015 888,2 933,2		<u> </u>						
1014 888 933 1015 888,2 933,2								
1015 888,2 933,2								
	l— —— →							
I 1016 888.4 933.4								
	1016	888,4	933,4					
1017 888,6 933,6								
1018 888,8 933,8	-							
1019 889 934								
1020 889,2 934,2	1020	889,2						
1021 889,4 934,4	1021	889,4						
1022 889,6 934,6	1022	889,6	<u> </u>					
1023 889,8 934,8	1023	889,8	934,8					

FI(n) = 890 + 0.2(n - 1024) MHz

Fu(n) = FI(n) + 45 MHz

for $975 \le n \le 1023$

* according to the Agreement (Bratislava 2001)

Preferential frequency partitioning in the E-GSM bands

23	Т] [23		Г	1	23	_		23		Г
0 10;	4		1023				1023			1023		
1019 1020 1023 AUT				SVN	∞			SVN	∞			
1019				(C)				S			SVN	12
			1016				1016				S	ľ
UNI			1015 1016				1015 1016					
=	12			G						1012		
				HNG	ω			g		1011 1012		Г
800			800					HNG	12	_		
1007 1008	T		1007 1008									
<u> </u>			$\stackrel{\smile}{\sim}$	_			304				AUT	12
				AUT	∞		1003 1004		Н			
l _⊨			0				10			0		
ALIT	13		999 1000							999 1000		_
			66					SVN	12	66		
				z				S				
994 995	L			SVN	∞							
994			2				2				SVN	13
			991 992	-			991 992		Н			
			6				6					
HNG	12			ଠ						87		
				HNG	6			Ŋ		986 987		-
m			က					HNG	12			
982 983	+-		982 983	\dashv								
66			8				380				AUT	12
AUT				AUT	8		979 980		П			
				`				SVN	2			
975			975				975			975		
				z	(9							
* 5	_			G / S	\overline{c}			z	<u> </u>		7	_
AUT / HNG*	(25) (24)			AUT / HNG / SVN	(17			HNG / SVN	(24) (25)		AUT / SVN	(24) (25)
AUT	(25)			AUT	(16)			HNG	(24)		AUT	(24)

Anhang F.10

zu den Nutzungsbedingungen im Verfahren betreffend Frequenzzuteilungen in den Frequenzbereichen 800 MHz, 900 MHz und 1800 MHz:

Vorzugsfrequenzabkommen 900 MHz 4

PROTOKOLL

über Expertengespräche zwischen Vertretern der deutschen, der ungarischen, der polnischen, der schweizerischen, der tschechischen und slowakischen sowie der österreichischen Verwaltung, März 1992 in Wien

In der Zeit vom 23. bis 27. März 1992 fanden in Wien Expertengespräche zwischen Vertretern der deutschen, der ungarischen, der polnischen, der schweizerischen, der tschechischen und slowakischen sowie der österreichischen Verwaltung betreffend die Aufteilung der Frequenzbereiche 410 - 430 MHz, 440 - 450 MHz, 450 - 455,740/460 - 465,740 bis 457,370/467,370 MHz (bis 457,370/467,370 MHz) und 875 - 960 MHz statt.

Die Teilnehmerliste ist als Anlage 1, die Tagesordnung als Anlage 2 angeschlossen.

Auf der Grundlage der als Anlage 3 angeführten Dokumente 1 - 25 wurden folgende einvernehmliche Festlegungen getroffen:

Zu TO 1: 410 - 420/420 - 430 MHz

1.1 Aufteilung in Vorzugsbereiche bzw. -frequenzen zwischen AUT/D/SUI

AUT, D und SUI teilen diesen Frequenzbereich in Vorzugsbereiche bzw. -frequenzen gemäß den Anlagen 4 (AUT/D), 5 (AUT/D/SUI) und 6 (AUT/SUI) unter folgenden Bedingungen auf:

Alle bis zum 1.4.1992 koordinierten und/oder in Betrieb befindlichen Funkstellen in Vorzugsbereichen oder auf Vorzugsfrequenzen der Nachbarländer sind bis zu deren Außerbetriebnahme mit NIB zu schützen und allfällige von ihnen verursachte Störungen sind zu akzeptieren (NOGAR).

Die Verwaltungen werden bis 30.6.1992 die zu schützenden Funkstellen mit ihren kennzeichnenden Merkmalen gemäß "Frequenzvereinbarung Wien, 1986" bekanntgeben. Diese Frequenzlisten (-dateien) stellen den letztgültigen Stand dar. Die Verwaltungen werden bis spätestens 31.12.1992 zu diesen Listen (Dateien) Stellung nehmen.

Neue Funkstellen werden ab 1.4.1992 von jeder Verwaltung nur auf eigenen Vorzugsfrequenzen in Betrieb genommen.

Die Verwaltungen werden sich bemühen, neue Funkstellen in den aufgeteilten Bereichen nur im 12,5 kHz-Kanalraster (belegte Bandbreite 11KO) in Betrieb zu nehmen und die bestehenden Funkstellen im 25 kHz-Kanalraster (belegte Bandbreite 16KO) langfristig aufzulassen.

Die Bedingungen für die Nutzung von Vorzugsfrequenzen sind in Anlage 7 enthalten.

Die Kanäle 1 - 64 und 401 - 464 werden zwischen AUT und D vorerst nicht in Vorzugsbereiche bzw. -frequenzen aufgeteilt. Beide Verwaltungen werden zukünftig weiterhin auf diesen Kanälen Einkanal-Richtfunkdienste (D: 20 kHz-Kanalabstand, 5 MHz Paarabstand; AUT 25 kHz-Kanalabstand, 10 MHz Paarabstand) betreiben. Um die Räumung der Teilbereiche zugunsten von Bündelfunknetzen zu erleichtern, wird D an AUT eine Zusammenstellung der Richtfunkverbindungen als Koordinierungsanfrage gemäß "Frequenzvereinbarung Wien, 1986" übersenden, die künftig im koordinierungspflichtigen Grenzgebiet AUT/D in den Kanälen 1 - 64 und 401 - 464 betrieben werden sollen. Bei Auswahl der jeweiligen Frequenzen wird D bemüht sein, die österreichische Belegung zu berücksichtigen.

Die Frequenz 420,0000 MHz (Unterband K 800) wird zwischen AUT, D und SUI als gemeinsamer Kanal für Quittierungs-Rufempfänger in Bündelfunknetzen festgelegt.

D beabsichtigt, die Kanäle 787 und 789 im 12,5 kHz-Kanalabstand für Reportagezwecke als gemeinsam benützte Frequenzen gemäß Punkt 1.3.5 der "Frequenzvereinbarung Wien, 1986" wie folgt einzusetzen:

ML, MO: max. ERP: 10 dBW

max. Antennenhöhe über Grund: 10 m

FB: max. ERP: 13 dBW

max. Antennenhöhe über Grund: 50 m

Hubschrauber: max. ERP: 0 dBW

max. Antennenhöhe über Grund: 300 m

Wegen der bestehenden österreichischen 16K0-Belegungen auf den Nachbarkanälen wird AUT diesen Wunsch prüfen und bis 31. Mai 1992 Stellung nehmen.

Die Festlegungen in Punkt 1 und die Anlage 5 des "Protokolls über Expertengespräche zwischen Vertretern der deutschen, der schweizerischen und der österreichischen Verwaltung, November 1990 in Wien", das "Abkommen von Darmstadt 1982 und 1983 für den Bereich zwischen 406,1 und 430 MHz" (zwischen D und SUI) und der "Zonenplan (zwischen SUI und AUT) treten mit Wirksamkeit vom 27. März 1992 außer Kraft.

AUT äußert den Wunsch, diesen Frequenzbereich auch in den Grenzgebieten zu TCH und HNG sowie AUT-D-TCH in Vorzugsbereiche bzw. -frequenzen aufzuteilen. AUT wird einen entsprechenden Vorschlag ausarbeiten und den beteiligten Verwaltungen zur Prüfung und Stellungnahme übermitteln.

1.2 Frequenzkoordinierung für Schmalband-Richtfunk in TCH und Bündelfunknetze in D

Zwischen D und TCH wurden Informationen über die derzeitige Nutzung des Bandes 410 bis 430 MHz ausgetauscht.

1.3 Aufteilung in Vorzugsbereiche bzw. -frequenzen in D/POL/TCH

D, POL und TCH teilen diesen Frequenzbereich in Vorzugsbereiche bzw. -frequenzen gemäß den Anlagen 8 (D/POL/TCH) und 9/1 (D/TCH), 9/2 (D/POL), 9/3 (POL/TCH) unter folgenden Bedingungen auf:

Alle bis zum 1.4.1992 in Betrieb befindlichen Funkstellen in Vorzugsbereichen oder auf Vorzugsfrequenzen der Nachbarländer sind bis zu deren Außerbetriebnahme mit NIB zu schützen und allfällige von ihnen verursachte Störungen sind zu akzeptieren (NOGAR).

Die Verwaltungen werden bis 30.6.1992 die zu schützenden Funkstellen mit ihren kennzeichnenden Merkmalen gemäß "Frequenzvereinbarung Wien, 1986" bekanntgeben. Diese Frequenzlisten (-dateien) stellen den letztgültigen Stand dar. Die Verwaltungen werden bis spätestens 31.12.1992 zu diesen Listen (Dateien) Stellung nehmen.

Neue Funkstellen werden ab 1.4.1992 von jeder Verwaltung nur auf eigenen Vorzugsfrequenzen in Betrieb genommen.

Die Verwaltungen werden sich bemühen, neue Funkstellen in den aufgeteilten Bereichen nur im 12,5 kHz-Kanalraster (belegte Bandbreite 11KO) in Betrieb zu nehmen und die bestehenden Funkstellen im 25 kHz-Kanalraster (belegte Bandbreite 16KO) langfristig aufzulassen.

Die Bedingungen für die Nutzung von Vorzugsfrequenzen sind in Anlage 7 enthalten.

Die in den Anlagen 8 und 9 als "common" ausgewiesenen Kanäle 785 bis 798 sollen für noch zu vereinbarende Nutzungen vorerst freigehalten werden.

Der Kanal 800 (420,0000 MHz) wird in D simplex mit < 10 dBW/2,5 m für Quittierungs-Rufempfänger (secundary paging) genützt.

Zur vorgenommen Aufteilung des Bandes 410 - 430 MHz in Vorzugsbereiche zwischen D und TCH bemerkt TCH, daß das Band 415 - 420 MHz nicht der Zuständigkeit der Fernmeldeverwaltung unterliegt. Ein Schutz der für D abgestimmten Vorzugsfrequenzen kann gegenwärtig von TCH nicht gewährleistet werden.

Die Bedingungen für den Schutz der Vorzugsfrequenzen werden noch bilateral vereinbart werden.

Zu TO 2: 440 - 450 MHz

Aufteilung in Vorzugsfrequenzen in den Grenzgebieten AUT, D, POL, SUI, TCH

AUT, D und SUI teilen diesen Frequenzbereich in Vorzugsbereiche bzw. -frequenzen gemäß der Anlage 10 unter folgenden Bedingungen auf:

Alle bis zum 1.4.1992 koordinierten und/oder in Betrieb befindlichen Funkstellen in Vorzugsbereichen oder auf Vorzugsfrequenzen der Nachbarländer sind bis zu deren Außerbetriebnahme mit NIB zu schützen und allfällige von ihnen verursachte Störungen sind zu akzeptieren (NOGAR). Die Verwaltungen werden bis 30.6.1992 die zu schützenden Funkstellen mit ihren kennzeichnenden Merkmalen gemäß "Frequenzvereinbarung Wien, 1986" bekanntgeben. Diese Frequenzlisten (-dateien) stellen den letztgültigen Stand dar. Die Verwaltungen werden bis spätestens 31.12.1992 zu diesen Listen (Dateien) Stellung nehmen.

Neue Funkstellen werden ab 1.4.1992 von jeder Verwaltung nur auf eigenen Vorzugsfrequenzen in Betrieb genommen.

Die Verwaltungen werden alle Maßnahmen ergreifen, um die bestehenden Funkstellen sobald wie möglich in eigene Vorzugsbereiche - bzw. auf eigene Vorzugsfrequenzen zu verlegen.

Die Bedingungen für die Nutzung von Vorzugsfrequenzen sind in der Anlage 7 enthalten.

In der Anlage 10 ist ein Vorschlag über eine mögliche Aufteilung dieses Frequenzbereiches zwischen AUT/TCH/D, TCH/D, TCH/POL/D und POL/D enthalten. Da in TCH ein Teil dieses Frequenzbereiches und in POL der gesamte Frequenzbereich nicht der Zuständigkeit der Fernmeldeverwaltungen unterliegt, ist eine Entscheidung über diesen Vorschlag derzeit nicht möglich. Die beteiligten Verwaltungen werden im Einvernehmen mit dem jeweils betroffenen Bedarfsträger über diesen Vorschlag gesondert beraten.

AUT äußert den Wunsch, diesen Frequenzbereich in den Grenzgebieten zu HNG und TCH in Vorzugsbereiche bzw. -frequenzen aufzuteilen. AUT wird einen entsprechenden Vorschlag ausarbeiten und den beiden Verwaltungen zur Prüfung und Stellungnahme übermitteln. Zu TO 3: 450 - 455,740/460 - 465,740 MHz (bis 457,370/467,370 MHz)

3.1 Neuaufteilung dieses Freuenzbereiches zwischen AUT, D, SUI, TCH, POL

Nachstehende Neuaufteilung in Vorzugsbereiche bzw.
-frequenzen zwischen AUT, D und SUI hat nur für die Betriebsdauer des deutschen Autotelefonnetzes Gültigkeit.
Die Bedingungen für die Nutzung der Vorzugsfrequenzen sind in
Anlage 7 enthalten.

3.1.1 Dreiländerfall AUT - D - SUI

Die Verwaltungen AUT, D und SUI nehmen den deutschen Vorschlag (Anlage 11) zur Aufteilung in Vorzugsbereiche bzw. -frequenzen im gesamten Bereich 450 - 455,740/460 - 465,740 MHz an.

Die Kosten für die Umstellung werden von AUT und SUI ermittelt und D mitgeteilt werden. Bezüglich der Übernahme der Kosten durch DPB Telecom werden gesonderte Verhandlungen geführt werden. Eine Umstellungsstrategie wird zwischen AUT, D und SUI in der Kalenderwoche 17 erarbeitet werden.

Bestehende Belegungen in AUT und SUI (Anlage 12) werden beibehalten und von D berücksichtigt werden. AUT berücksichtigt die bestehende Belegung in SUI (Anlage 12).

3.1.2 Zweiländerfall AUT - D

Im Bereich 450,000 - 451,300/460,000 - 461,300 MHz nimmt AUT den Vorschlag von D zur Aufteilung in Vorzugsbereiche bzw. -frequenzen gemäß Anlage 11 an.

Bestehende Belegungen in AUT gemäß Anlage 12 werden beibehalten und von D berücksichtigt werden.

Für den Bereich 451,300 - 455,740/461,300 - 465,740 MHz sieht sich AUT außerstande, auf Vorzugsbereiche bzw.-frequenzen umzustellen, da die Auswirkungen auf das voll ausgelastete österreichische Netz C zu schwerwiegend wären. AUT ist aber bereit, die Frequenzen für die Organisationskanäle im deutschen C-Netz durch Frequenztausch freizugeben. Ein entsprechender Vorschlag mit Ersatzfrequenzen wurde von AUT mit Schreiben vom 27.8.1991 an D übergeben (Anlage 21). D wird dazu Stellung nehmen.

Die mit 27.3.1992 von D in den deutschen Vorzugsbereichen in Betrieb befindlichen Funkstellen können mit den bisherigen Parametern weiterhin betrieben werden, wenn diese Funkstellen keine Störungen verursachen. Diese Belegungen mit ihren funktechnischen Merkmalen werden AUT und SUI bis 15.4.1992 bekanntgegeben werden.

Alle bisher koordinierten Funkstellen sowie alle früheren von D eingeleiteten Koordinierungsverfahren in den Frequenzbereichen 450 - 455,740/460 - 465,740 MHz im Dreiländerfall AUT/D/SUI und 450 - 451,3/460 - 461,3 MHz im Zweiländerfall AUT/D werden durch diese Liste ersetzt. Die entsprechenen Daten werden aus den Datenbeständen in AUT, D und SUI gelöscht.

3.1.3 Dreiländerfall AUT - D - TCH

Im Bereich 450 - 451,300/460 - 461,300 MHz nehmen AUT und TCH den Vorschlag von D gemäß Anlage 11 zur Aufteilung in Vorzugsbereiche bzw. -frequenzen an. Bestehende Belegungen in AUT gemäß Anlage 12 werden beibehalten und von D berücksichtigt werden.

Im Bereich 451,300 - 455,740/461,300 - 465,740 MHz wenden AUT und TCH weiterhin den "Rautenplan" an.
Auch im übrigen Grenzgebiet TCH und AUT bleibt der "Rautenplan" aufrecht.

D schlägt eine Änderung des Vorschlages zur Aufteilung des Frequenzbereiches 451,300 - 455,740/461,300 - 465,740 MHz für AUT/D/TCH (Dok. 13) vor, um eine Vereinbarkeit des in AUT und TCH verwendeten "Rautenplanes" an eine Vorzugsfrequenzaufteilung im Grenzgebiet zwischen den beteiligten Ländern herzustellen.

Der Vorschlag sieht eine gemeinsame Nutzung von 2/3 des Spektrums durch AUT und TCH vor und ist in Anlage 13 enthalten.

TCH und AUT werden diesen Vorschlag prüfen und ihre gemeinsame Stellungnahme bis 1.7.1992 bekanntgeben. D wird die beiden Verwaltungen erforderlichenfalls nach diesem Zeitpunkt zu einem Treffen zur Klärung der notwendigen Details einladen.

3.1.4 Zweiländerfall D - TCH

TCH nimmt den deutschen Vorschlag gemäß Anlage 11 zur Aufteilung in Vorzugsbereiche bzw. -frequenzen im Bereich von 450 - 455,740/460 - 465,740 MHz an.

3.1.5 Dreiländerfall D/TCH/POL und Zweiländerfall D/POL

POL und TCH nehmen den deutschen Vorschlag gemäß Anlage 11 zur Aufteilung in Vorzugsbereiche bzw. -frequenzen im Bereich 450 - 455,740/460 - 465,740 MHz an.

Über Vorschlag von POL wird der betrachtete Frequenzbereich wegen des polnischen öffentlichen Mobilfunknetzes auf 450 - 457/460 - 467 MHz erweitert.

D, POL und TCH nehmen für diesen Bereich die Aufteilung in Vorzugsbereiche bzw. -frequenzen gemäß Anlage 14 und D und POL gemäß Anlage 15 an.

Die Umstellungen für den Bereich 455,740 - 457,0/ 465,74 - 467,0 MHz werden ab 1.1.1994 wirksam.

3.1.6 Zweiländerfall POL - TCH

Im Bereich 450 - 457,370/460 - 467,370 MHz nehmen POL und TCH die Aufteilung in Vorzugsbereiche bzw. -frequenzen gemäß Anlage 16 an.

3.2 Aufklärung der Gültigkeit des "Protokolls Praha 1982 in der DDR und CSSR"

Auf dem Gebiet der ehemaligen DDR (5 neue Bundesländer) gilt seit dem 3. Oktober 1990 aufgrund gesetzlicher Vorgaben der Frequenzbereichszuweisungsplan der Bundesrepublik Deutschland.

Frequenznutzungen aus der Zeit der DDR werden während einer Übergangszeit auf den neuen Plan umgestellt.

Daher werden die Bestimmungen des" Protokolls über die Expertengespräche zwischen der Fernmeldeverwaltung der DDR und der CSSR über Probleme der Frequenzabstimmung im 0,7m-Band, Prag, 22. - 26. Februar 1982" nicht mehr angewendet.

Die Frequenzverwaltung der Bundesrepublik Deutschland hofft, daß spätestens im Jahre 1995 alle Frequenznutzungen auf dem Gebiet der 5 neuen Bundesländer dem neuen Plan angepaßt sein werden.

3.3 Frequenzkoordinierung für öffentliche Funktelefonnetze in HNG

HNG übermittelte AUT und TCH eine Koordinierungsanfrage über ein öffentliches Autotelefonnetz im 450 MHz-Bereich. AUT stellt fest, daß diese Koordinierungsanfrage nicht in Übereinstimmung mit den Bestimmungen des "Rautenplanes" ist. Es wird bestätigt, daß in den Grenzgebieten AUT/TCH, AUT/TCH/HNG, HNG/TCH und AUT/HNG der "Rautenplan" weiterhin Gültigkeit hat und auch angewendet wird.

AUT und TCH werden daher die ungarische Koordinierungsanfrage bis 15.4.1992 global beurteilen und die Problemfälle bekanntgeben. HNG wird zu dieser globalen Stellungnahme innerhalb von zwei Wochen antworten und zwar entweder wird die Koordinierungsanfrage zurückgezogen werden oder um technische Lösungsvorschläge (Durchführung von gemeinsamen Messungen, Festlegung von Beurteilungskriterien) von AUT und TCH ersucht werden.

Zu TO 4 und 5: 890 - 915/935 - 960 MHz

Frequenzkoordinierung für das österreichische Netz D mit D,SUI,HNG,TCH Frequenzkoordinierung für GSM, AUT,D;SUI,HNG,TCH

Für den Bereich 890 - 915/935 - 960 MHz haben die beteiligten Verwaltungen nach eingehender Diskussion der derzeitigen und künftigen Nutzung dieses Frequenzbereiches die in der Anlage 17 angeführte Aufteilung in Vorzugsbereiche basierend auf dem GSM-Kanalraster vereinbart.

Die bekanntgegebenen Nutzungen sind in Anlage 18 zusammengefaßt.

Der Einsatz der Vorzugsfrequenzen erfolgt in Übereinstimmung mit der CEPT-Empfehlung T/R 20-08 E, wobei zusätzlich folgende technische Parameter festgelegt werden:

Bei mehr als einem analogen Kanal in einem GSM Kanal werden die Leistungen der analogen Kanäle so angepaßt, daß die Summenfeldstärke von 19 dB μ V/m, gemessen in 3m Höhe, nicht überschritten wird.

Meßbandbreite: 200 kHz für GSM - TACS und GSM - NMT Bei analogen Systemen untereinander TACS - NMT gilt der Wert von 19 dB μ V/m, gemessen in 3m Höhe, ebenfalls, aber mit einer Meßbandbreite von 25 kHz.

HNG und AUT sind übereingekommen, im Frequenzbereich 890 - 898/935 - 943 MHz weiterhin den gemäß "Protokoll über die Expertengespräche zwischen Vertretern der ungarischen, der tschechoslowakischen und der österreichischen Verwaltung, 6. bis 9. Dezember 1988 in Wien" vereinbarten Hexagonplan mit dessen technischen Parametern anzuwenden.

Die Verwaltungen - ausgenommen D - sind grundsätzlich übereingekommen, daß zur optimalen Nutzung des zur Verfügung stehenden Frequenzspektrums ein grenzüberschreitender einheitlicher Rasterplan mit gleichen Planungskriterien nach Möglichkeit anzustreben ist.

Zu den getroffenen Vorzugsbereichaufteilungen ist zu ergänzen:

1) Vorzugsbereichaufteilung zwischen HNG und TCH

Wegen der besseren Verträglichkeit zwischen der Flugnavigation in TCH und dem GSM-System in HNG schlägt TCH folgende Änderung der Kanalverteilung zwischen HNG und TCH vor:

HNG: 20 - 39 (20 Kanäle) 60 - 79 (20 Kanäle) 85 - 96 (12 Kanäle) 109 - 112 (4 Kanäle) 116 - 119 (4 Kanäle) TCH: 1 - 19 (19 Kanäle) 40 - 59 (20 Kanäle) 80 - 84 (5 Kanäle) 97 - 108 (12 Kanäle) 113 - 115 (3 Kanäle)

HNG wird ihre Stellungnahme zu diesem Vorschlag TCH und den anderen beteiligten Verwaltungen schriftich bis 31.5.1992 übermitteln.

2) TCH ersucht die Nachbarverwaltungen um Übermittlung der wesentlichen technischen Parameter für in einer Grenztiefe von 50 km zur tschechoslowakischen Grenze auf den GSM-Kanälen 92-124 in Betrieb befindlichen GSM-Basisstationen.

Die Nachbarverwaltungen kommen diesem Ersuchen entgegen und weisen gleichzeitig darauf hin, daß die bekanntgegebenen Daten als Verschlußsache nur für den Dienstgebrauch verwendet werden dürfen.

3) Zusatzvereinbarung D/AUT für das Gebiet Salzburg/Stadt

AUT ersucht D um Überlassung zusätzlicher GSM-Kanäle zur Nutzung mit Analog-Anwendungen für Salzburg/Stadt.

Abweichend von den in diesen Gesprächen abgestimmten Vorzugsfrequenzen wird vereinbart, daß AUT die GSM-Kanäle 27 und 28, sowie 61 und 62 (Vorzugskanäle D) verwenden kann.

D verpflichtet sich, im Radius von 30 km um Salzburg (13 03 17 öL 47 49 37 nB) keine GSM-Basisstationen mit diesen Frequenzen einzusetzen.

Durch die Festlegung von Vorzugsbereichen ergibt sich, daß die Kanäle gemäß Vorzugsfrequenzplan vom Mai 1989 nicht mehr der neuen Aufteilung entsprechen.

Die mit 27.3.1992 von AUT und D festgelegten Vorzugsfrequenzen können von AUT für den Raum Salzburg/Stadt mit
den bestehenden technischen Parametern (jedoch auf den
neuen Frequenzen) weiterhin betrieben werden.
Der darüberhinaus vorgelegte Bedarf (Koordinierungsverfahren) wird von D wohlwollend geprüft.
Ein Jahr nach der Inbetriebnahme des GSM-Erstausbaues in
AUT (= große Städte plus wesentliche Hauptverkehrswege)

Ein Jahr nach der Inbetriebnahme des GSM-Erstausbaues in AUT (= große Städte plus wesentliche Hauptverkehrswege) werden D und AUT zwecks einer bedarfsgerechten Frequenzdotierung für Salzburg/Stadt in neuerliche Verhandlungen treten.

4) Anwendung des Hexagonplanes im Grenzgebiet HNG/AUT

Im Grenzgebiet HNG/AUT wird im Frequenzbereich 890 - 898/935 - 943 MHz der vereinbarte Hexagonplan weiter Anwendung finden.

Mit HNG wurde für alle Hexagone, welche durch die Grenzlinie geteilt sind, eine flächenproportionale Frequenzaufteilung vorgenommen und eine demententsprechende Kanaldotierung durchgeführt (Anlage 19).

Beide Verwaltungen legen einvernehmlich nachfolgende Organisationskanäle, welche einen Schutzabstand von 21 dB erfordern, fest:

> AUT K 23 - K 43 HNG K 263 - K 283

HNG wird zu der von AUT übermittelten Koordinierungsanfrage GZ 118405/III-ZB/91 bis spätestens 30.4.1992 Stellung nehmen. 5) Die Aufteilung der GSM-Kanäle für POL (Anlage 17) ist als vorläufig zu betrachten. Verbindliche Festlegungen kann POL erst nach 1995 und nach dem Freiwerden des Bereiches von militärischen Anwendungen treffen.

Zu TO 6: 875 - 888/920 - 933 MHz
Frequenzkoordinierung AUT, D, SUI, HNG, TCH, POL

Für diesen Bereich haben die beteiligten Verwaltungen die Nutzung bekanntgegeben; eine Zusammenstellung ist in Anlage 20 enthalten.

Nach eingehender Diskussion wird, da

- die Frequenzfestlegung für DSRR zur Diskussion steht
- die Frequenzfestlegungen für das UIC-Band nicht endgültig vorliegen
- die Einführung von CT1+ (in D und SUI bereits eingeführt) noch in Diskussion steht die Aufteilung in Vorzugsbereiche zum gegenwärtigen Zeitpunkt als nicht zweckmäßig erachtet.

Als Grundlage für die Aufteilung in Vorzugsbereiche sind die Ergebnisse der nächsten CEPT - ERC - Tagung abzuwarten.

Zu TO 7: Allfälliges

7.1 Datenträgeraustausch

HNG schlägt vor, zur Erprobung einen Datenträgeraustausch durchzuführen. Der Satzaufbau, auf der Basis der "Frequenz-vereinbarung Wien, 1983" wurde diskutiert und von HNG ein Datenträger an AUT übergeben, der die Koordinierungsdaten von Funkstellen im Grenzgebiet HNG/AUT in DBF-Format beinhaltet. Es wird vereinbart, einen Datenträger in Form eines Textfiles etwa Mitte Mai 1992 mit den Daten jener österreichischen Funkstellen, die mit HNG koordiniert wurden, zu übermitteln. TCH wird von HNG ebenfalls eine Koordinierungsliste auf Datenträger erhalten.

Mit TCH wird vereinbart, gleichfalls versuchsweise einen Teilbereich der österreichischen Koordinierungsliste auf Datenträger zu übermitteln.

Weiters übergibt TCH AUT und HNG einen Datenträger mit einem Teil der Koordinierungsdaten zu Versuchszwecken.

Nach Vorliegen von Erfahrungen werden diese im Rahmen von Gesprächen, die noch vor der vorgesehenen Revision der "Frequenzvereinbarung Wien, 1986" stattfinden sollten, ausgetauscht werden.

Dieser Austausch schließt eine mögliche Änderung der Datenstruktur nach einer Revision der "Frequenzvereinbarung Wien, 1986" in keiner Weise aus. HNG ist bereit, sich anzupassen.

TCH hat D einen Datenträger (Diskette) mit Daten gemäß dem "Protokoll der Tagung zum Abschluß einer Vereinbarung über die Koordinierung von Frequenzen zwischen 29,7-960 MHz Berlin, 13./14.8.1991" übergeben.

Bei Koordinierungsanfragen auf Datenträgern zwischen HNG und AUT werden die technischen Parameter entsprechend der "Frequenzvereinbarung Wien, 1986" übermittelt werden.

7.2 Änderung der Anlage 1 zur "Frequenzvereinbarung Wien, 1986"

Mit der vereinbarten Neuaufteilung des 450 MHz-Bereiches wird eine Änderung der Anlage 1 zur "Frequenzvereinbarung Wien, 1986" erforderlich. Diese Änderung wird im Rahmen der vorgesehenen Revision der Vereinbarung vorgenommen werden.

7.3 Störfall 159,650 MHz zwischen SUI und AUT

Durch den Betrieb eines Gleichwellenfunknetzes in SUI und eines Funknetzes in Vorarlberg auf der Frequenz 159,650 MHz treten gegenseitige Störungen auf.

Um eine rasche Beseitigung der Störungen zu erreichen, vereinbaren SUI und AUT weitere Messungen zur Eingrenzung der Störungsursache. Die Messungen werden von SUI unter Einschaltung der österreichischen Funkmeßdienste organisiert werden.

Wenn durch technische Maßnahmen (z.B. Richtantennen in SUI bzw. AUT) kein störungsfreier Betrieb der betroffenen Funkstellen erreicht werden kann, werden weitere Gespräche zur Klärung der Situation zwischen AUT und SUI geführt werden.

7.4 Einsatz der Frequenz 159,200 MHz in SUI und AUT
SUI beabsichtigt, die Frequenz 159,200 MHz für Bergrettungsdienste auch in Hubschraubern einzusetzen.
AUT hat diesem Einsatz nur bedingt zugestimmt.
Da in SUI auf dieser Frequenz ca. 2000 Funkeinrichtungen
betrieben werden, SUI keine Ausweichfrequenz zur Verfügung
steht, stimmt AUT der Benützung dieser Frequenz vorbehaltslos
zu.

SUI anerkennt die bestehende Belegung auf dieser Frequenz in AUT (Silvretta); die technischen Merkmale werden SUI umgehend bekanntgegeben werden.

7.5 Einsatz der Frequenzen 170,300 bis 171,030 MHz in AUT, SUI und D

SUI schlägt eine gemeinsame nicht koordinierungspflichtige Nutzung von einigen der nachfolgend angeführten Frequenzen 170,310 bis 170,530, 170,570 bis 170,810 und 170,830 MHz, max. ERP 2,5 W, vor.

AUT und D werden diesen Vorschlag prüfen und das Ergebnis bis Ende April 1992 gegenseitig bekanntgeben.

Wien, 27. März 1992

TEILNEHMERLISTE

Von der deutschen Verwaltung:

Kangeldi Tashin

Schaffer Urs

Name		Dienststelle	Tel.Nummer	FAX-Nr.
Günther Horst		BAPT	+49372 6502/324	657 1647
Herrmann Günthe	er	TELEKOM	+49228 181/3232	181 3292
Hönnekes Heinz		BAPT	+492845 608/39	608/50
Lohmer Rudolf		DETECON	+49228 3826/411	382 6667
Lustig Manfred		TELEKOM	+496151 83/6513	83/4435
Mallau Heiko		TELEKOM	+496151 83/2390	834945
Ort Dieter		TELEKOM	+496151 83/2345	834945
Rose Helmut		BAPT	+496131 18/3155	185617
Simon Wolfgang		BAPT	+496131 18/3155	185617
Wegner Rainer		BMPT	+4930 2634/3121	2634 600
Wenke Martina		BMPT	+4930 2634/3131	2634 600
Wolff Helmut		BAPT	+496131 180	185600
Zinn Ernst		MMO	+49211 583789	583834
Von der polnis	chen Ve	rwaltung:		
Grzybkowski Ma	ciej	Institute of		
Pachniewski Gr	707077	Telecommunication Panstwowa Agency		482815
	_	Radiokomunikacy		328044
Stawski Vlodzi	mierz	Institute of Telecommunication	on +4871 482815	482815
Werwinski Wald	emar	Panstwowa Agenc	ja	
		Radiokomunikacy	jna +4822 327805	328044
Von der schwei	zerisch	en Verwaltung:		
Liechti Urs		General Director of Swiss PTT	rate +4131 622009	625191

General Directorate

General Directorate of Swiss PTT

+4131 628338

+4131 622663

625191

629074

of Swiss PTT

Von der tschechischen und slowakischen Verwaltung:

Halousková Ludmila	FMS	+422	203100	236 8379
Linhart Eugen	P&T Forschungs- Institut		7992147	763211
Lopour Zbynek	SR Praha	+422	7143186	
Sipka Miroslav	SR Bratislava	+427	2792508	496720
Tuma Zdenek	FMO	+422	33042075	
Záchej Marian	FMO	+422	33042244	311 9330

Von der ungarischen Verwaltung:

Bozsoki Istvan	Institute for	+361	156/3853	156	7520
Bugyi Jozsef	Frequency Management Institute for	+361	156/2458	156	5520
Dr. Fiala Karoly	Frequency Management Ministry of Trans- port Comms & Waterman	+361	122 0220/	808	
Horvath Ferenc	Ministry of Trans- port Comms & Waterman	+361	155/9658	156	3493
Horvath Lajos	Institute for	+361	156/2458	156	5520
Nemcsics Elek	Frequency Management Institute for Frequency Management	+361	156/2802	156	5520
Pejtsik Pal	Institute for	+361	156/4203	156	5520
Szili Elisabeth	Frequency Management Institute for Frequency Management	+361	156/4203	156	5520

Von der österreichischen Verwaltung:

Ergoth Thomas	FZA	+431 79711/4269	79711 76
Farkas Franz	FZA	+431 79711/4262	79711 46
Fleischmann Georg	FZA	+431 79711/4260	79711 46
Franzl Johanna	Gendion	+431 51551/9114	512 7387
Kaiser Gerhard	FZA	+431 79711/4676	79711 46
Kramreither Günter	FZA	+431 79711/4264	79711 46
Lettner Gerd	Gendion	+431 51551/9101	512 7387
Pichler Johann	Gendion	+431 51551/2146	512 7387
Siegl Rainer	FZA	+431 79711/4268	79711 46
Tallowitz Ernst	Gendion	+431 51551/2142	512 7387
Winkler Georg	FZA	+431 79711/4607	79711 46

Tagesordnung

- 1 410 430 MHz
- 1.1 Überarbeitung der Festlegungen gemäß "Protokoll AUT,D, SUI November 1990 in Wien" Dok. 1,2,24,25
- 1.2 Frequenzkoordinierung für Schmalband-Richtfunk in TCH und Bündelfunk in D
- 1.3 Aufteilung in Vorzugsfrequenzen zwischen D, TCH, POL Dok. 21
- 2 440 450 MHz Aufteilung in Vorzugsfrequenzen in den Grenzgebieten AUT, D, POL, SUI, TCH
- 3 450 455,740/460 465,740 MHz (bis 457,370/467,370 MHz)
- 3.1 Neuaufteilung zwischen AUT, D, SUI, TCH, POL Dok. 7,8,9,10,11,12,13
- 3.2 Aufklärung der Gültigkeit des "Protokolls Praha 1982 in der DDR und CSSR"
- 3.3 Frequenzkoordinierung für öffentliche Funktelefonnetze in HNG Dok. 19
- 4 890 905/935 950 MHz
 Frequenzkoordinierung für das österreichische Netz D
 mit D, SUI, HNG, TCH
- 5 905 915/950 960 MHz
 Frequenzkoordinierung für GSM; AUT, D, SUI, HNG, TCH
 Dok. 14, 15, 16, 18, 20
- 6 875 888/920 933 MHz
 Frequenzkoordinierung AUT, D, SUI, HNG, TCH
 Dok. 17

- 7. Allfälliges
- 7.1 Datenträgeraustausch Dok. 22,23
- 7.2 Änderung der Anlage 1 zur "Frequenzvereinbarung Wien,1986"
 - 7.3 Störfall 159,650 MHz zwischen SUI und AUT
 - 7.4 Einsatz der Frequenz 159,200 MHz in SUI und AUT
 - 7.5 Einsatz der Frequenzen 170,300 bis 171,300 in AUT,D,SUI

DOKUMENTENLISTE

Dok.Nr.	Quelle	Thema
1	SUI	Vorzugsfrequenzen 410 - 430 MHz; AUT/D/SUI
2	AUT	Vorzugsfrequenzen 410 - 430 MHz; AUT/D/SUI
3	SUI	Vorzugsfrequenzen 440 - 450 MHz; AUT/D/SUI
4	SUI	Vorzugsfrequenzen 440 - 450 MHz; D/SUI
5	AUT	Vorzugsfrequenzen 440 - 450 MHz; AUT/D/SUI
6	D	Vorzugsfrequenzen 440 - 450 MHz;
		SUI/D, SUI/D/AUT, AUT/D, AUT/TCH/D, TCH/D,
		TCH/POL und POL/D
7	SUI	Vorzugsfrequenzen 450-455,74/460-465,74 MHz; AUT/D/SUI
8, 10	SUI	Vorzugsfrequenzen 450-455,74/460-465,74 MHz; D/SUI
9	AUT	Vorzugsfrequenzen 450-455,74/460-465,74 MHz; D/SUI/AUT
11	D	Vorzugsfrequenzen 450-455,74/460-465,74 MHz; D/SUI/AUT
12	D	Kanalraster im deutschen öbL-Netz C
13	D	Vorzugsfrequenzen 450-455,74/460-465,74 MHz;
		AUT/D/SUI, AUT/D, AUT/D/TCH, D/POL/TCH, D/POL, D/TCH
14	D	Frequenzkoordinierung 905-915/950-960 MHz; D/AUT
15	AUT	Frequenzkoordinierung 905-915/950-960 MHz;
16	D	GSM-Vorzugskanäle 890-915/935-960 MHz;
		D/POL, D/TCH/POL, D/TCH, D/AUT/TCH, D/AUT,
		D/SUI/AUT, D/SUI, D/F/SUI, D/F
17	SUI	Vorzugsfrequenzen 875-888/920 - 932 MHz;
		D/SUI/AUT, AUT/SUI, D/SUI, AUT/D
18	ETSI-SMG	

		-2- Anlage 3 Blatt 2
19	HNG	Autotelefonnetz im 450 MHz-Bereich in HNG
20	HNG	GSM-Vorzugskanäle TCH/HNG, AUT/TCH/HNG, AUT/HNG
21	D	Vorzugsfrequenzen 410 - 430 MHz;D/POL/TCH, D/TCH, D/POL
22	AUT	Datenträgeraustausch
23	HNG	Datenträgeraustausch
24	D	Gemeinsam benützte Frequenz 420,0000 MHz
25	D	Reportagefrequenzen im Bereich 410 - 430 MHz

409 421 433 445 469 481 493 505 517 529 541 553 567 601 625 637 649 661 769 775 7769 781 793	009 021 033 045 057 069 081 093 105 117 129 141 153 165 177 189 201 213 225 237 249 261 273 285 297 309 321 333 345 357 369 381 393
410 422 434 446 458 470 482 494 506 518 530 542 554 662 674 686 674 686 670 722 734 746 758 770 782 794	244 5 010 022 034 046 058 070 082 094 106 118 130 142 154 166 178 190 202 214 226 238 250 262 274 286 298 310 322 334 346 358 370 382 394
411 423 435 447 459 471 483 507 519 531 555 567 579 603 663 663 663 773 775 777 775 775 775 775 775 775 77	frequency of the state of the s
412 424 436 448 460 472 484 496 508 520 532 544 556 8580 592 604 616 628 640 652 664 676 688 700 712 724 736 748 760 772 784 796	012 024 036 048 060 072 084 096 108 120 132 144 156 168 180 192 204 216 228 240 252 264 276 288 300 312 324 336 348 360 372 384 396
401 413 425 437 449 461 473 485 497 521 533 545 557 569 581 565 665 667 669 701 713 725 737 749 761 773 785 797	013 025 037 049 061 073 085 097 109 121 133 145 157 169 181 193 205 217 229 241 253 265 277 289 301 313 325 337 349 361 373 385 397
402 414 426 438 450 462 474 486 498 510 522 534 558 570 582 594 606 618 630 642 654 666 678 702 714 726 738 750 762 774 786 798	014 026 038 050 062 074 086 098 110 122 134 146 158 170 182 194 206 218 230 242 254 266 278 290 302 314 326 338 350 362 374 386 398
403 415 427 439 451 463 475 487 499 511 523 535 546 559 571 583 595 607 619 631 643 655 667 679 703 715 727 739 751, 763 775 787 799	015 027 039 051 063 075 087 099 111 123 135 146 159 171 183 195 207 219 231 243 255 267 279 291 303 315 327 339 351 363 375 387
404 416 428 440 452 464 476 488 500 512 524 536 548 560 572 584 596 608 632 644 656 680 692 704 716 728 740 752 764 778 788 800	- 43 0 Mi 004 016 028 040 052 064 076 088 100 112 124 136 148 160 172 184 196 208 220 232 244 256 268 292 304 316 328 340 352 364 376 388 400 376 376 376 376 376 376 376 376
405 417 429 441 453 465 477 489 501 513 525 549 561 573 562 563 669 669 705 777 789 765 777 789	017 029 041 053 065 077 089 101 113 125 137 149 161 173 185 197 209 221 233 245 257 269 281 293 305 317 329 341 353 365 377 389
406 418 430 442 454 466 478 490 502 514 526 538 550 562 574 586 598 610 622 634 646 658 670 682 706 718 730 742 754 766 778 790	018 030 042 054 066 078 090 102 114 126 138 150 162 174 186 198 210 222 234 246 258 270 182 294 306 318 330 342 354 366 378 390
407 419 431 443 467 467 491 503 557 557 561 563 57 67 77 77 77 77 791	019 031 043 055 067 079 091 103 112 139 151 163 175 187 129 211 223 247 259 271 283 295 307 319 319 319 319 319 319 319 319 319 319
408 432 444 456 468 492 516 528 540 552 564 612 636 648 672 684 696 708 720 732 744 756 780 792	044 056 068 080 092 104 116 128 140 152 164 176 188 200 212 224 236 248 260 272 284 296 308 320 332 344 356 368 392
	Anloge 4

•)

Vortug	gsfregu	ienzen	im Be	reich 4	10-	430 MH 003	2 fur	AUT /	D /	<i>SUİ</i> 007	008
009	010	011	012	013	014	015	016	017	018	019	020
021	022	023	024	025	026	027	028	029	030	031	032
033	034	035	036	037	038	039	040	041	042	043	044
045	046	047	048	049	050	051	052	053	054	055	056
057 069	058 070	059 071	060 072	061 073	062 074	063 075	064 076	065 077	066 078	067 079	080
081	082	083	084	085	086	087	088	089	090	091	092
093	094	095	096	097	098	099	100	101	102	103	104
105	106	107	108	109	110	111	112	113	114	115	116
117	118	119	120	121	122	123	124	125	126	127	128
129 141	130 142	131 143	132 144	133 145	134 146	135 146	136 148	137 149	138 150	139 151	140 152
153	154	155	156	157	158	159	160	161	162	163	164
165	166	167	168	169	170	171	172	173	174	175	176
177	178	179	180	181	182	183	184	185	186	187	188
189	190	191	192	193	194	195	196	197	198	199	200
201 213	202 214	203 215	204 216	205 217	206 218	219	208	209	210 222	$\frac{211}{223}$	212
225	226	227	228	229	230	231	232	233	234	235	236
237	238	239	240	241	242	243	244	245	246	247	248
249	250	251	252	253	254	255	256	257	258	259	260
261 273	262 274	263 275	264 276	265 277	266 278	267 279	268 280	269 281	270 182	271	272 284
285	286	287	288	289	290	291	292	293	294	283 295	296
297	298	299	300	301	302	303	304	305	306	307	308
309	310	311	312	313	314	315	316	317	318	319	320
321	322	323	324	325	326	327	328	329	330	331	332
333 345	334 346	335 347	336 348	337 349	338 350	339 351	340 352	341 353	342 354	343 355	344 356
357	358	359	360	361	362	363	364	365	366	367	368
369	370	371	372	373	374	375	376	377	378	379	380
381	382	383	384	385	386	387	388	389	390	391	392
393	394	395	396	397	398	399	400	105	100	107	100
409	410	411	412	401	402	403	404	405	406 418	407 419	408
421	422	423	424	425	426	427	428	429	430	431	432
433	434	435	436	437	438	439	440	441	442	443	444
445	446	447	448	449	450	451	452	453	454	455	456
457	458 470	459 471	460 472	461 473	462	463 475	464	465 477	466 478	467	468
481	482	483	484	485	486	487	488	489	490	491	492
493	494	495	496	497	498	499	500	501	502	503	504
505	506	507	508	509	510	511	512	513	514	515	516
517 529	518 530	519 531	520 532	521 533	522 534	523 535	524 536	525 537	526 538	527 539	528 540
541	542	543	544	545	546	546	548	549	550	551	552
553	554	555	556	557	558	559	560	561	562	563	564
565	566	567	568	569	570	571	572	573	574	575	576
577	578	579	580	581 593	582	583	584	585	586	587	588
589	590 602	591 603	592 604	605	594 606	595 607	596 608	597 609	598 610	599	600
613	614	615	616	617	618	619	620	621	622	623	624
625	626	62.7	628	629	630	631	632	633	634	635	636
637	638	639	640	641	642	643	644	645	646	647	648
649	650 662	651 663	652	653 665	654 666	655 667	656 668	657 669	658 670	659 671	660
673	674	675	676	677	678	679	680	681	682	683	684
685	686	687	688	689	690	691	692	693	694	695	696
697	698	699	700	701	702	703	704	705	706	707	708
709	710	711	712 724	713	714 726	715	716	717	718	719	720
733	734	735	736	737	738	739	728 740	741	730 742	743	732 744
745	746	747	748	749	750	751	752	753	754	755	756
757	758	759	760	761	752	763	764	765	766	767	7'68
769	770	771	772	773	774	775	776	777	778	779	780
781 793	782 794	783 795	784 796	785 797	786 798	787 799	788 800	789	790	791	792
183	194	133	790	131	198	133	000				

AUT

Gui

Anlage 5

./	P			P	, ,	/: 3		· ·		_		
Vort	ugstre	gwenz	en im	Berei 001	002	- 430 M	H3 +G	005	000	T 007	008	
009	010	011	012	013	014	015	016	017	018	019		
021	022	023	024	025	026	027	028	029	030	031	032	Anlage 6
033	034	035	036	037	038	039	040	041	042	043	044	mage 0
045	046	047	048	049	050	051	052	053	054	055	056	Ø
057	058	059	060	061	062	063	064	065	066	067 079	068 080	
069 081	070 082	071 083	072 084	073 085	074 086	075 087	076 088	077 089	078	079	092	
093	094	095	096	097	098	099	100	101	102	103	104	
105	106	107	108	109	110	111	112	113	114	115	116	
117	118	119	120	121	122	123	124	125	126	127	128	
129	130	131	132	133	134	135	136	137	138	139	140	
141	142	143	144	145	146	146	148	149	150	151	152	
153	154	155	156	157	158	159	160	161	162	163	164	
165	166	167	168	169	170	171	172	173	174	175	176	SUI
177	178	179	180	181	182	183	184	185	186	187	188	
189	190	191	192	193	194	195	196	197 209	198	199	200	AUT
201	202 214	203 215	204 216	205	206 218	207 219	208	209	210 222	211 223	212	101
225	226	227	228	229	230	231	232	233	234	235	236	
237	238	239	240	241	242	243	244	245	246	247	248	
249	250	251	252	253	254	255	256	257	258	259	260	
261	262	263	264	265	266	267	268	269	270	271	272	
273	274	275	276	277	278	279	280	281	182	283	284	
285	286	287	288	289	290	291	292	293	294	295	296	
297	298	299	300	301	302	303	304	305	306	307	308	
309	310	311	312	313	314	315	316	317	318	319	320 332	
321	322	323	324	325	326	327	328 340	329 341	330 342	331 343	344	
333 345	334 346	335 347	336 348	337 349	338 350	339 351	352	353	354	355	356	
357	358	359	360	361	362	363	364	365	366	367	368	
369	370	371	372	373	374	375	376	377	378	379	380	E
381	382	383	384	385	386	387	388	389	390	391	392	
393	394	395	396	397	398	399	400					
				401	402	403	404	405	406	407	408	
409	410	411	412	413	414	415	416	417	418	419	420	
421	422	423	424	425	426	427	428	429	430	431	432	
433	434 446	435 447	436 448	437 449	438 450	439 451	440	441 453	442 454	443 455	444 456	
457	458	459	460	461	462	463	464	465	454	467	468	
469	470	471	472	473	474	475	476	477	478	479	480	
481	482	483	484	485	486	487	488	489	490	491	492	
493	494	495	496	497	498	499	500	501	502	503	504	
505	506	507	508	509	510	511	512	513	514	515	516	
517	518	519	520	521	522	523	524	525	526	527	528	
529	530	531	532	533	534	535	536	537	538	539	540	
541	542	543	544	545	546	546	548	549	550	551	552	
553 565	554 566	555 567	556 568	557 569	558 570	559 571	560 572	561 573	562	563 575	564 576	
577	578	579	580	581	582	583	584	585	574 586	587	588	
589	590	591	592	593	594	595	596	597	598	599	600	
601	602	603	604	605	606	607	608	609	610	611	612	
613	614	615	616	617	618	619	620	621	622	623	624	
625	626	627	628	629	630	631	632	633	634	635	636	
637	638	639	640	641	642	643	644	645	646	647	648	
649	650	651	652	653	654	655	656	657	658	659	660	
661	662	663	664	665	666	667	668	669	670	671	672	
673	674	675	676	677	678	679	680	681	682	683	684	
685 697	686 698	687 699	688 700	689 701	690 702	691 703	692 704	693 705	694 706	695 707	696 708	
709	710	711	712	713	714	715	716	717	718	719	720	
721	722	723	724	725	726	727	728	729	730	731	732	
733	734	735	736	737	738	739	740	741	742	743	744	
745	746	747	748	749	750	751	752	753	754	755	756	
757	758	759	760	761	762	763	764	765	766	767	768	l.
769	770	771	772	773	774	775	776	777	778	779	780	
781	782	783	784	785	786	787	788	789	790	791	792	
793	794	795	796	797	798	799	800					

Sui

AUT

Bedingungen für die Nutzung von Vorzugsfrequenzen

A) Vorzugsfrequenzen

Vorzugsfrequenzen können ohne vorhergehendes Koordinierungsverfahren eingesetzt werden, wenn in einer Entfernung von der Staatsgrenze in 60 km im Nachbarland die von der ortsfesten oder den beweglichen Funkstellen herrührende und nach CCIR Rec. 370-5 (50 % Orts- und 10 % Zeitwahrscheinlichkeit) berechnete oder durch Messungen ermittelte Störfeldstärke entsprechend nachfolgender Tabelle nicht überschritten wird.

B) Vorzugsfrequenzen anderer Verwaltungen

Vorzugsfrequenzen der anderen Verwaltung können ohne vorhergehendes Koordinierungsverfahren eingesetzt werden, wenn an der Grenze die von der ortsfesten oder den beweglichen Funkstellen herrührende und nach CCIR Rec. 370-5 (50% Orts- und 10 % Zeitwahrscheinlichkeit) berrechnete oder durch Messungen ermittelte Störfeldstärke entsprechend nachfolgender Tabelle nicht überschritten wird.

Unter "Grenze" wird zwischen D, AUT, SUI, TCH und POL der Verlauf der Staatsgrenze verstanden. Abweichend davon gelten für die Frequenzbereiche

> 455,74 - 457,0 MHz 465,74 - 467,0 MHz

als "Grenze" zwischen D/POL, D/TCH und D/TCH/POL und TCH/POL

und für die Frequenzbereiche

457,0 - 457,37 MHz

467,0 - 467,37 MHz

zwischen TCH/POL

die Koordinierungslinien nach der "Zusatzvereinbarung Berlin, 15.8.1991 zur Vereinbarung von Wien, 1986".

Dreiländerfall

Der Dreiländerfall ist dadurch gekennzeichnet, daß die im Punkt B beschriebenen Feldstärken an der Grenze zu zwei Nachbarländern überschritten wird. In diesem Fall kann nur eine Frequenz aus der Verteilung der Vorzugsfrequenzen für drei Länder ohne Koordinierung eingesetzt werden.

MHz	Feldstärke	Länderfall
	*)	
410 - 430	20 dBµV/m	
440 - 450	20 dBμV/m	
450 - 451,3/460 - 461,3	10 dBμV/m	D-TCH, D-POL, D-SUI, D-AUT
	20 dBµV/m	SUI-AUT, TCH-AUT, TCH-POL
451,3 - 455,740/		
461,3 - 465,740	10 dBμV/m	
455,740/457,000/		
465,740/467,000	$10 \text{ dB}\mu\text{V/m}$	D-POL-TCH
	20 dBμV/m	D-AUT, D-SUI-AUT
457,000 - 457,370/		
467,000 - 467,370	20 dBμV/m	POL-TCH

^{*)} Diese Werte gelten nicht für HNG

Die Verwaltungen melden die nicht betriebenen, koordinierten Funkstellen im Vorzugsbereich eines anderen Landes bis 31.12.1992 ab, damit die Eintragungen in den Frequenzdateien gelöscht werden können. In der Folge wird jährlich, jeweils im Oktober, eine Liste der aktuellen Belegungen ausgetauscht, welche Auskunft über jene Funkstellen gibt, für welche die Auflag NIB/NOGAR gilt.

Vorzugsfrequenzen im Bereich 410-430 MHz für die Grenzgebiete D/POL/TCH

Anlage 8
Blatt 1

Kanalgruppierungsplan Kanalabstand 150 kHz

	٠.										. 1
1	2	3	4	15	<u>.</u>	7	6	- Ş	10	11	12
	•			<u> </u>	•						
				1	2	3	4	5	6	7	8
9	. 10	. 11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	25	27	23	29	30	31	32
33	34	35	36	37	38	39	40	41	42	43	44
- 45	46	47	48	49	50	51	52	53	54	55	56
57	58	59	60	61	62	63	64	65	66	67	68
69	70	71	72	73	74	75	75	77	78	79	80
81	82	83	84	85	86	87	88	89	90	91	92
93	94	95	96	97	98	99	100	101	102	103	104
105	106	107	108	109	110	111	112	113	114	115	1116
117	118	119	120	121	122	123	124	125	126	127	128
129	130	131	132	133	134	135	136	137	138	139	140
141	142	143	144	145	146	147	143	149	150	151	152
153	154	155	156	157	158	159	150	161	162	163	164
165	166	167	168	159	170	171	172	173	174	175	175
177	178	179	180	181	182	183	134	185	136	187	1881
189	190	191	192	193	194	195	196	. 197	198	199	200
201	202	203	204	205	206	207	208	209	210	211	212
213	214	215	216	217	218	219	220	221	222	223	224
225	226	227	228	229	230	231	232	233	234	235	236
237	238	239	240	241	242	243	244	245	246	247	2.48
249	250	251	252	253	254	255	256	2.57	258	259	2.50
261	262	263	264	265	256	257	258	259	270	271	272
273	274	275	276	277	278	271	280	291	282	283	284
285	286	287	288	289	290	291	292	293	294	295	296
297	298	299	300	301	302	303	304	305	306	307	308
309	310	311	312	313	314	315	315	317	313	319	320
321	322	323	324	325	325	327	328	329	330	331	332
333	334	335	336	337	338	339	340	341	342	343	344
345	346	347	348	349	350	351	352	353	354	355	355
357	358	359	360	361	362	363	364	365	366	357	368
369	370	371	372	373	374	375	375	377	378	379	085
381	382	383	384	385	385	387	388	389	390	391	392
393	394	395	396	397	398	399	400				

Kanalgruppierungsplan Kanalabstand 150 kHz

	•					٠					
1_	2	3	4	5	6	7	8	· 9	10	11	12
	•										
				401	402	403	404	405	406	407	408
409	410	411	412	413	414	415	416	417	418	419	420
421	422	423	424	425	426	427	428	429	430	431	432
433	434	435	436	437	438	439	440	441	442	443	444
445	446	447	448	449	450	451	452	453	454	455	456
457	458	459	460	461	462	463	464	465	466	467	468
469	470	471	472	473	474	475	476	477	478	479	480
481	482	483	484	485	486	487	488	489	490	491	492
493	494	495	496	497	498	499	500	501	502	503	504
505	506	507	508	509	510	511	512	513	514	515	516
517	518	519	520	521	522	523	524	525	526	527	528
529	530	531	532	533	534	535	536	537	538	539	540
541	542	543	544	545	546	547	548	549	550	551	552
553	554	555	556	557	558	559	560	561	562	563	564
565	. 566	567	568	569	570	571	572	573	574	575	576
577	578	579	580	581	582	583	584	585	586	587	588
589	590	591	592	593	594	595	596	597	598	599	600
601	602	603	604	605	606	607	608	609	610	611	612
613	614	615	616	617	618	619	620	621	622	623	624
625	626	627	628	629	630	631	632	633	634	635	636
637	638	639	640	641	642	643	644	645	646	647	648
1549	650	651	652	.653	654	655	656	657	658	659	660
661	662	663	664	635	666	667	668	669	670	671	672
673	674	675	676	677	678	679	680	681	682	683	684
685	686	687	688	689	690	691	692	693	684	695	696
697	698	699	700	701	702	703	704	705	706	707	708
709	710	711	712	713	714	715	716	717	718	719	720
721	722	723	724	725	726	727	728	729	730	731	732
733	734	735	736	737	738	739	740	741	742	743	744
745	746	747	748	749	750	751	752	753	754	755	756
757	758	759	760	761	762	763		765	766	767	768
769	770	771	772	773	774	775	776	777	778	7 79	780
781	782	7 83	784	785	7 86	787	788	789	790	791	792
793	794	795	796	797	798	799	800	, 0 9	, 90		
195	134	195	730	, , ,							

COMMON TCH

 $\frac{\longrightarrow}{\longrightarrow} D$

Vorzugsfrepuenzen im Bereich 410-430MHz für das Grenzgebiet TCH/D Anlage 9/1

Kanalgruppierungsplan Kanalabstand 150 kHz

BL.1

		. 1
1 2 3 4 5 6 7 8	9 10	11 12
	•	1 1
1 2 3 4	5 6	7 8
9 10 11 12 13 14 15 16	17 18	19 20
21 22 23 24 25 25 27 28	29 30	31 32
33 34 35 36 37 38 39 40	41 42	43 44
45 46 47 48 49 50 51 52	53 54	55 56
57 58 59 60 61 62 63 64	65 66	67 68
69 70 71 72 73 74 75 75	77 78	79 80
81 82 83 84 85 86 87 88	89 90	91 92
93 94 95 96 97 98 99 100 1	01 102	103 102
105 106 107 108 109 110 111 112 1	13 114	115 116
117 118 119 120 121 122 123 124 1	25 126	127 128
129 130 131 132 133 134 135 136 1	37 138	139 140
141 142 143 144 145 146 147 148 1	49 150	151 152
153 154 155 156 157 158 159 160 1	61 . 152	163 164
165 166 167 168 169 170 171 172 1	73 174	175 176
177 178 179 180 181 182 183 134 1	85 186	187 188
189 190 191 192 193 194 195 196 .1	97 198	199 200
201 202 203 204 205 206 207 208 2	09 210	211 212
213 214 215 216 217 218 219 220 2	21 222	223 224
225 226 227 228 229 230 231 232 2	33 234	235 236
237 238 239 240 241 242 243 244 2	45 246	247 248
249 250 251 252 253 254 255 256 2	57 258	259 250
261 262 263 264 265 266 267 258 2	59 270	271 272
273 274 275 276 277 278 279 280 2	81 282	283 234
285 286 287 288 289 290 291 292 2	93 284	295 296
297 298 299 300 301 302 303 304 3	05 306	307 308
309 310 311 312 313 314 315 316 3	17 313	319 320
321 322 323 324 325 325 327 328 3	29 330	331 332
333 334 335 336 337 338 339 340 3	41 342	343 344
345 346 347 348 349 350 351 352 3	53 354	355 356
1 1	65 366	367 368
1 1	77 378	379 380
	89 390	391 392
393 394 395 396 397 398 399 400		:

										21.0	
						• • •				_B	1.2
1	2	<u> </u>	4_	5	. 6	7	88	· 9	10	11	1
					400	402	404	405	406	407	40
400	44.0	444	440	401	402	403	404			407	40
409	410	411	412	413	414	415	416	417	418	419	42
421	422	423	424	425	426	427	428	429	430	431	43.
433	434	435	436	437	438	439	440	441	442	443	44
445	446	447	448	449	450	451	452	453	454	455	45
457	458	459	460	461	462	463	464	465	466	467	.46
469	470	471	472	473	474	475	476	477	478	479	48
481	482	483	484	485	486	487	488	489	490	491	49
493	494	495	495	497	498	499	500	501	502	503	50
505	506	507	508	509	510	511	512	513	514	515	51
517	518	519	520	521	5.22	523	524	525	526	527	52
529	530	531	532	533	534	535	536	537	538	539	54
541	542	543	544	545	546	547	548	549	550	551	55
553	.554	555	556	557	558	559	560	561	562	563	56
565	566	567	568	569	570	571	572	573	574	575	57
577	578	579	580	581	582	583	584	585	586	587	58
589	590	591	592	593	594	595	596	597	598	599	60
601	602	603	604	605	606	607	608	609	610	611	61
613	614	615	616	617	618	619	620	621	622	623	62
625	626	627	628	629	630	631	632	633	634	635	63
637	638	639	640	641	642	643	644	645	646	647	64
649	650	651	652	.653	654	655	656	657	658	659	66
661	662	663	664	635	666	667	668	669	670	671	67
673	674	675	676	677	678	679	680	681	682	683	68
685	686	687	688	689	690	691	692	693	684	695	69
697	698	699	700	701	702	703	-704	705	706	707	70
709	710	711	712	713	714	715	716	717	718	719	72
721	722	723	724	725	726	727	728	729	730	731	73
733	734	735	736	737	738	739	740	741	742	743	74
745	746	747	748	749	750	751	752	753	754	755	75
757	758	759	760	761	762	763		765	766	7 67	76
769	770	771	772	773	774	775	776	777	778	779	78
781	782	783	784	1785	786	787	788	789	790	791	79

TCH

COMMON

 $\longrightarrow D$

Vorzugs frequenter im Bereich 410 - 430 MHz

für das Grenzgebiet D/ POL

Kanalgruppierungsplan

Kanalabstand 150 kHz

Anlage 9/2 Blatt 1

		,										,
	1	2	3	4	5_	. 6	7	3	g	. 10	11	12
		•			İ							
					1	2	3	4	5	6	7	8
	9	. 10	11	12	13	14	15	16	17	18	19	20
	21	22	23	24	25	25	27	23	29	30	31	32
	33	34	35	36	37	38	39	40	41	42	43	44
	45	46	47	48	49	5.0	51	52	53	54	55	56
	57	58	59	60	61	62	63	64	65	66	67	68
•	6.9	70	71	72	73	74	75	75	77	78	79	80
	81	82	83	84	85	86	87	88	89	90	91	92
	93	94	95	96	97	98	99	100	101	102	103	104
	105	106	107	108	109	110	111	112	113	114	115	116
	117	118	119	120	121	122	123	124	125	125	127	128
	129	130	131	132	133	134	135	136	137	138	139	140
	1.41	142	143	144	145	146	147	143	149	150	151	152
	153	154	155	156	157	158	159	150	161	162	163	164
	165	166	167	168	159	170	171	172	173	174	175	175
	177	178	179	180	181	182	183	134	185	136	187	188
	189	190	191	192	193	194	195	196	.197	198 ·	199	200
	201	202	203	204	205	206	207	208	209	210	211	212
	213	214	215	216	217	218	219	220	221	222	223	224
	225	226	227	228	229	230	231	232	233	234	235	236
	237	238	239	240	241	242	243	244	245	246	247	248
	249	250	251	252	253	254	255	256	257	258	259	250
	261	262	263	264	265	256	257	258	269	270	271	272
	273	274	275	276	277	278	279	280	281	282	283	234
	285	286	287	288	289	290	291	292	293	284	295	296
	297	298	299	300	301	302	303	304	305	306	307	308
	309	310	311	312	313	314	315	315	317	313	319	320
	321	322	323	324	325	325	327	328	329	330	331	332
	333	334	335	336	337	338	339	340	341	342	343	344
	345	346	347	348	349	350	351	352	353	354	355	356
	357	358	359	360	361	362	363	364	365	366	357	368
	369	370	371	372	373	374	375	375	377	378	379	OSE
	381	382	383	384	385	385	387	388	389	390	391	392
	393	394	395	396	397	398	399	400				
٠							·		<u> </u>			1

Anlage 9/2

Kanalgruppierungsplan Kanalabstand 150 kHz

						·		4			
1	2	'3	4	<u> </u>	6	7	88	· 9	10	11	12
				401	402	403	404	405	406	407	408
409	410	411	412	413	414	415	416	417	418	419	420
421	422	423	424	425	426	427	428	429	430	431	432
433	434	435	436	437	438	439	440	441	442	443	. 444
445	446	447	448	449	450	451	452	453	454	455	456
457	458	459	460	461	462	463	464	465	466	467	.468
469	470	471	472	473	474	475	476	477	478	479	480
481	482	483	484	485	486	487	488	489	490	491	492
493	494	495	496	497	498	499	500	501	502	503	504/
505	506	507	508	509	510	511	512	513	514	515	516
517	518	519	520	521	5.22	523	524	525	526	527	528
529	530	531	532	533	534	535	536	537	538	539	540
541	542	543	544	545	546	547	548	549	550	551	552
553	.554	555	556	557	558	559	560	561	562	563	564
565	. 566	567	. 568	569	570	571	572	573	574	575	576
577	578	579	580	581	582	583	584	585	586	587	588
589	590	591	592	593	594	595	596	.597	598	599	600
601	602	603	604	605	606	607	608	609	610	611	612
613	614	615	616	617	618	619	620	621	622	623	624
625	626	627	628	629	630	631	632	633	634	635	636
637	638	639	640	641	642	643	644	645	646	647	648
649	650	651	652	.653	654	655	656	657	658	659	660
661	662	663	664	635	666	667	668	669	670	. 671	672
673	674	675	676	677	678	679	680	681	682	683	684
685	686	687	688	689	690	691	692	693	684	695	696
697	698	699	700	701	702	703	704	705	706	707	708
709	710	711	712	713	714	715	716	717	718	719	720
721	722	723	724	725	726	727	728	729	730	731	732
733	734	735	736	737	738	739	740	741	742	743	744
745	746	747	748	749	750	751	752	753	754	755	756
757	758	759	760	761	762	763 .		765	766	7 67	768
769	770	771	772	773	774	<i>7</i> 75	776	777	7 78	7 79	780
781					786	787/			7		792
1	782	783	7,84	797	798	799	800	789	790	791	192

-> POL

[WEIB] >> D

COMMON

Vorzugsfrequenzen im Bereich 410 - 430 MHz für das Grenzgebiet POL/TCH

POL	TCH
-----	-----

Kanäle 001	- 104		Kanäle 105 - 188
410,0125 -	411,3000	MHz	411,3125 - 412,3500 MHz
420,0125 -	421,3000	MHz	421,3125 - 422,3500 MHz
Kanäle 189	- 236		Kanäle 237 - 357
412,3625 -	412,9500	MHz	412,9625 - 414,4625 MHz
422,3625 -	422,9500	MHz	422,9625 - 424,4625 MHz
Kanäle 358	- 516		Kanäle 517 - 582
414,4750 -	416,4500	MHz	416,4625 - 417,2750 MHz
424,4750 -	426,4500	MHz	426,4625 - 427,2750 MHz
Kanäle 583	- 663		Kanäle 664 - 784
417,2875 -	418,2875	MHz	418,3000 - 419,8000 MHz
427,2875 -	428,2875	MHz	428,3000 - 429,8000 MHz

POL/TCH

785 - 800 419,8125 - 420,0000 MHz 429,8125 - 430,0000 MHz

Aufteilung des Frequenzbereiches 440-450 MHz in Vorzugsbereiche

SUI/D	SUI/AUT/D	AUT'/D	AUT/TCH/D	TCH/D	TCH/PL/D	.PL/D
440,0000	440,0000 SUI.	440,0000	440,0000 TCH	440,0000	440,0000 TCH	440,000
SUI	440,4875	AUT	440,4875	TCH	440,4875	PL
440,8625	AUT		AUT	4 - 5	PL	
440,8750	440,9875	440,9875	440,9875	440,9875	440,9875	440,9875
	441,0000	441,0000	441,0000	441,0000	441,0000	441,0000
	D	25	D		ת	
	441,4875	3 - 3	441,4875		441,4875	
	441,500	100	441,5000		441,5000	
D	AUT	D	AUT	D	PL	D
	441,6250	300	441,6250		441,6250	
	441,6375		441,6375	1 209 9	441,6375	
0.70	D		D		D	
441,7375	441,7375	441,7375	441,7375	441,7375	441,7375	441,7375
441,7500	441,7500	441,7500	441,7500	441,7500	441,7500	441,7500
	sui		тсн		TCH	
8.8	442,0875		442,0875		442,0875	
	442,1000		442,1000		442,1000	
	AUT		AUT		PL	
SUI	442,1500	TUA	442,1500	TCH	442,1500	PL
120	442,1625		442,1525		442,1625	
	suI	1	TCH		1'CH	
442,3375	442,3375	442,3375	442,3375	442,3375	442,3375	442,3375

SUI/D	SUI/AUT/D	AUT/D	AUT/TCH/D	TCH/D	TCH/PL/D	PL/D
442,3500	442,3500	442,3500	442,3500	442,3500	442,3500	442,3500
-	AUT		AUT		PL	
	442,5125	- 2	442,5125		442,5125	
D	442,5250		442,5250		442,5250	
	D.	D	D	D	D	
442,6125	442,6125	ע	442,6125	ь	442,6125	Ď
142,6250	442,6250		442,6250		442.6250	
SUI	SUI		TCH		TCH	
	442,7125	440 8088	442,7125		442,7125	
•	442,7250	442,7375	442,7250	442,7375	442,7250	442,737
	AUT	442.7500 AUT	AUT	442,7500 TCH	PL	442,750 PL
42,9375	442,9875	442,9500	442,9875	442,9375	442,9875	442,957
442,9500	443,0000	442,9625	443,0000	442,9500	443,0000	442,950
•	* D	·	D		Ð	
	443,2125		443,2125		443,2125	
•	443,2250	,	443,2250		443,2250	
D	AUT	Ð	AUT	D	PL	. D
	443,3375		443,3375		443,3375	
	443,3500		443,3500		443/3500	
	ນ		v		D	
443,6875	443,6875	443,6875	443,6875	443,6875	443,6875	443,687
443,7000	443,7000	443,7000	443,7DDO	413,7000	443,7000	443,700
sui	SUI	TUA	TCH	TCR	TCH	PL
443,9375	443,9375	443,9375	443,9375	443,9375	443,9375	443,937

^{*} Die Frequenz 443,200 MHz kann von D-auf gemeinschaftlicher Basis unter der Bedingung NOGAR ab sofort genutzt werden.

SI	מווח	SUI/AUT/D	AUT/D	AUT/TCH/D	TCH/D	TCH/PL/D	PL/D
443	,9500	443,9500	443,9500	443,9500	443,9500	443,9500	443,9500
		AUT		AUT		PL	
		444,1500		444,1500		444,1500	
1	D	444,1625	Ď	444,1625	מ	444,1625	D
		מ	13	D		D	
444	,2500	444,2500	444,2500	444,2500	444,2500	444,2500	444,2500
444	2625	444,2625	444,2625	444,2625	444,2625	442,2625	
		AUT		TCH		TCH	
SI		444,4250		444,4125	500	444,4125	
31).T	441,4375	TUA	444,4250	TCH	444,4250	PJ.
		SUI		AUT		. 726	
441,	,4875	444,4875	444,4875	444,4875	444,4875	444,4875	444,4875
444,	5000	444,5000	444,5000	444,5000	444,5000	444,5000	444,5000
1	0	D .	Q	ນ	D	מי	D
414,	,7750	444,7750	444,7750	444,7750	444,7750	444,7750	444,7750
444	7875	444,7875	444,7875	444,7875	444,7875	444,7875	444,7875
SI	ינט.	AUT	AUT	AUT	TCH	TCH	PL
444,	,9875	444,9875	444,9875	444;9875	444,9875	444,9875	444,9875
445,	0000	445,0000	445,0000	445,0000	445,0000	445,0000	445,0000
		SUI		тен		TCH	
	17	445,4875	ATITO	445,4875	TCH	445,4875	PL
SI		445,5000	AUT	445,5000	10n	445,5000	F 6
445	, 8625	AUT		AUT		PL	
445,	8750	445,9875	445,9875	445,9875	445,9875	445,9875	445,9875
		446,0000	446,0000	446,0000	446,0000	446,0000	446,0000
1		D	. D	D	D	D	Œ
446	,4875	446,4875	446,4875	446,4875	446,4875	446,4875	446,4875
					1	1	1

SU1/D	SUI/AUT/D	AUT/D	AUT/TCH/D	TCH/D	TCII/PL/D	PL/D
445 5000	146,5000	1445 5000	1446 5000	1446 5000	446,5000	446 50001
440,0000	TUA	140,000	AUT	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	PL	
	446,6250		445,6250		446,6250	
D		Œ		D		บ
	446,6375		446,6375		446,6375	
	מ	In the Individual	D	5 b 1948	D	
446,7375	446,7375	446,7375	446,7375	446,7375	446,7375	446,7375
446,7500	446,7500	446,7500	446,7500	446,7500	446,7500	446,7500
	sui		TCH	S	TCH	
	447,0875		447,0875		447,0875	
	447,1000		447,1000		447,1000	
suI	TUA	AUT	AUT	TCH	· PL	PL
	447,1500		447,1500		447,1500	
•	447,1625		447,1625		447,1625	
	suī		TCH		TCR	
447,3375	447,3375	447,3375	447,3375	447,3375	447,3375	447,3375
447,3500	447,3500	447,3500	447,3500	447,3500	447,3500	447,3500
	AUT		AUT		PL	
	447,5125	N/A	447,5125		447,5125	
	447,5250		447,5250		447,5250	
	۵		D		D	
447,6125	447,6125	Ð	447,6125	D	447,6125	D
447,6250	447,6250		447,6250		447,6250	
	SUI		TCH		TCH	
	447,7125		447,7125		447,7125	
sui	447,7250	447,7375	447,7250	447,7375	447,7250	447,7375
		447,7500 AUT	AUT	447,7500 TCH	PL	447,7500 PL
447,9375		447,9375		447,9375		447,9375
	447,9875		447,9875		447,9875	

WIEN DESCRIPT

מעוועם	SUI/AUT/D	AUT/D	AUT/TCH/D	TCH/D	TCHAPTAD	PL/D
447,9500	448,0000	447,9500	148,0000	117,9500	445,0000	447,9500
	ת	in Spy	D	a print	D	
	448,2125	F 16	446,2125		448,2125	
	448,2250		448,2250	y d	448,2250	
	AUT		AUT		PL	:
	418,3375		448,3375	- 18	448,3375	
•	448,3500	Po 543	448,3500	100	448,3500	-
	מ	- W	ם		D	
448,5875	418,6875	448,6875	448,6875	448,6875	448.6875	448,6875
448,7000	448,7000	418,7000	448,7000	448,7000	418,7000	448,7000
SUI	SUI	AUT	TCH	TCH	TCH	PL
448,9275	448,9375	448,9375	448,9375	448,9375	448.9375	448,9375
448,9500	448,9500	448,9500	448,9500	448,9500	448,9500	448,9500
,	AUT		AUT		- PL	
	449,1500		449,1500		449,1500	ת
מ	440,1625	D	449,1625	Ď	449,1625	,,
	D		ת		. D	
419,2500	449,2500	449,2500	449,2500	449,2500	449,2500	449,2500
449,2625	419,2625	449.2625	449,2025	449,2625	449,2625	449,2525
	AUT		TCH		TCH	
g.,,	449,4250	A 1700	149,4125	TOU	449,4125	μ,
SUI	110,4375	TUA	449,4250	TCH	449,4250	P.
	SUI		AUT		Pl.	
149,4875	449,4875	449,4875	449,4875	449,4875	449,4875	449,4875

SUI/D	SUI/AUT/D	AUT/D	AUT/TCH/D	TCH/D	TCH/PL/D	PL/D
449,5000	449,5000	449,5000	449,5000	449,5000	449,5000	449,5000
υ	Ď	D	D	D	D	ם
449,7750	449,7750	449,7750	449,7750	449,7750	449,7750	449 7750
449,7875	449,7875	449,7875	449,7875	449,7875	449,7875	449,7875
SUI	SUI	AUT	AUT	TCH	TCH	ьп
449,9875	449,9875	449,9875	449,9875	449,9875	449,9875	449,9875

Anlage 10 Blat 6

450,0000 MHz - 455,7400 MHz und 460.0000 MHz - 465.7400 MHz in Vorzugsbereiche

Drei-Länder-Fall: AUT/D/SUI

Die Bedeutung der Spalten:

A: Bandgrenzen in MHz

B: erste und letzte Trägerfrequenz in MHz bei derzeitigem Raster

C: erste und letzte Trägerfrequenz in MHz bei Verwendung von 12.5 kHZ-Raster

D: Landeskennung für Vorzugs - und Spektrumsanteil in kHz

A	В	С	D
449.99375	450.0250	450.0000	SUI
450.45625	450.4500	450.4500	462.5
450.45625	450.4700	450.4625	AUT
450.70625	450.6900	450.7000	250
450.70625	450.7125	450.7125	D
451.49375	451.4875	451.4875	787.5
451.49375	451.5100	451.5000	AUI
451.75625	451.7500	451.7500	262.5
451.75625	451.7750	451.7625	D
451.84375	451.8250	451.8375	87.5
451.84375	451.8500	451.8500	SUI
451.90625	451.8750	451.9000	62.5
451.90625	451.9100	451.9125	TUA
452.01875	452.0100	452.0125	112.5
452.01875	452.0500	452.0250	SUI
452.10625	452.0750	452.1000	87.5
452.10625	452.1100	452.1125	AUT
452.15625	452.1500	452.1500	50

	The second			
	452.15625	452.1750	452.1625	SUI
	452.25625	452.2500	452.2500	100
	452.25625	452.2750	452.2625	D
	452.34375	452.3250	452.3375	87.5
	452.34375	452.3500	452.3500	AUT
	452.40625	452.3900	452.4000	62.5
	452.40625	452.4250	452.4125	SUI
	452.44375	452.4250	452.4375	37.5
ı	452.44375	452.4500	452.4500	AUT
	452.55625	452.5500	452.5500	112.5
	452.55625	452.5750	452.5625	SUI
	452-61875	452.6000	452.6125	62.5
	452.61875	452.6250	452.6250	מ
	452.78375	452.7750	452.7750	165
	452.78375	452.8000	452.7875	AUT
	452.94375	452.9300	452.9375	160
	452.94375	452.9500	452.9500	D
	453.15625	453.1500	453.1500	212.5
	453.15625	453.1750	453.1625	SUI
	453.21875	453.2000	453.2125	62.5
	453-21875	453.2300	453.2250	AUT
	453.34375	453.3300	453.3375	125
	453.34375	453.3500	453.3500	SUT
	453.41875	453.4000	453.4125	75
	453.41875	453.4250	452.4250	D
	453.54375	453.5250	453.5375	125
	453.54375	453.5500	453.5500	AUT
	453.66875	453.6500	453.6500	125 -

453.66875	453.6750	453.6750	D
453.76000	453.7500	453.7500	91.2 5
453.76000	453.7700	453.7625	AUT
453.80000	453.7900	453.8000	40
453.80000	453.8125	453.8125	D
453.94375	453.9250	453.9375	143.75
453.94375	453.9500	453.9500	AUT
454.14375	454.1300	454.1375	200
454.14375	454.1500	454.1500	SUI
454.26875	454.2500	454.2625	125
454.26875	454.2750	454.2750	D
454.34375	454.3250	454.3375	75
454.34375	454.3500	454.3500	SUI
454.41875	454.4000	454.4125	75
454.41875	454.4300	454.2500	AUT
454.53125	454.5300	454.5250	112.5
454.53125	454.5500	454.5375	SUI
454.65625	454.6500	454.6500	125
454.65625	454.6750	454.6625	D
454.73125	454.7250	454.775	75
454.73125	454.7500	454.7375	SUI
454.94375	454.9250	454.9375	212,5
454.94375	454.9500	454.9500	D
455.14375	455.1250	454.1375	200
455.14375	455.1500	455.1500	AUT
455.30625	455.2900	455.3000	162.5
455.30625	455.3250	455.3125	SUI
455.38125	455-3750	455.3750	75

455.38125	455.4000	455.3875	D
455.54375	455.5250	455.5375	162.5
455.54375	455.5500	455.5500	AUT
455.68125	455.6700	455.6750	137.5
455.68125	455.7000	455.6875	SUI
455.74375	455.7250	455.7250	62.5

Devision of the frequency bands 450.000 MHz to 455.740 MHz and 460.000 MHz to 465.740 MHz into preferential subbands in the border area

AUT/D

	first and Last frequencies 20 KHz spacing (MHz)	25 kHz	Country Spectrum (kHz)
460.0000	460.0100		AUT
460.6500	460.6400		650
460.6500		460.6625	D
461.3000		461.2875	650
461-3000		461.3125	D
461-5000		461.4875	200
461.5000	461.5100		AUT
461.7400	461.7300		240
461.7400		461.7500	D
461.9000		461.8875	160
461.9000	461.9100		AUT
462.1400	462.1300		240
462.1400		462.1500	D
462.3400		462.3250	200
462.3400	462.3500		AUT
462.5400	462.5300	·	200
462.5400		452.5250	D
462.7600		462.7500	220
462.7600	462.7700		AUT
462.9400	462.9300		180

AUT/D

462.9400		462.9500	D
463.1400		463.1300*	200
463.1400	463.1500		AUT
463.3400	463.3300		200
463.3400		463.3500	D
463.5400		463.5250	200
463.5400	463.5500		AUT
463.6600	463.6500		120
463.6600		463.6750	D
463.7600		463.7500	100
463.7600	463.7700		TUA
463.8000	463.7900	* 1	40
463.8000		463.8125	D
463.9400		463.9250	140
463.9400	463.9500		AUT
464.1400	464.1300		200
464.1400		464.1500	D
464.3400		464.3250	200
464.3400	464.3500		AUT
464.5400	464.5300		200
464-5400		464.5500	D
464.7400		464.7250	200
464.7400	464.7500		AUT
464.9400	464.9300		200
464.9400		464.9500	D
465.1400	St. Vite Village	465.1250	200
465-1400	465.1500		AUT
; 465.3400	465.3300		200

AUT/D

465.3400		465.3500	D
465.5400		465.5250	200
465 - 5400	465.5500		AUT
465.7400	465.7300		200

Balance:

AUT: 2870 kHz D: 2870 kHz

*: Exception from 25-kHz-spacing due to control channels

Devision of the frequency bands 450.000 MHz to 455.740 MHz and 460.000 MHz to 465.740 MHz into preferential subbands in the border area

Limits of frequency band (MHz)	First and Last frequencies 20 KHz spacing (MHz)	25 kHz	Country Spectrum (kHz)
460.0000	460.0100	<i></i>	AUI
460.4600	460.4500		460
460.4600	460.4700	460.4750	TCH
460.8900	460.8700		430
460.8900		460.9000	D
461.3000		461.2875	410
461.3000		461.3125	D
461.4400		461.4250	140
461.4400	461.4500	461.4500	TCH
461.6000	461.5900	461.5875	160
461.6000	461.6100		AUT
461.7400	461.7300		140
461.7400		461.7500	D
461.8400		461.8250	100
461.8400	461.8500	461.8500	TCH
462.0000	461.9900	461.9875	160
462.0000	462.0100		AUT
462.1400	462.1300	Contract of the second	140
462.1400		462.1500	Ŋ
462.3400		462.3250	200

	462.3400	462.3500		AUT
	462.5000	462.4900		160
	462.5000	462.5100	452.5125	TCH
	462.6400	462.6300	462.6250	140
	462.6400		462.6500	D
	462.7400		462.7250	100
	462.7400	462.7500	462.7500	TCH
)	462.8400	462.8300	462.8250	100
	462.8400	462.8500		AUT
	462.9400	462.9300		100
	462.9400		462.9500	D
	463.1400		463.1300*	200
	463.1400	463.1500		AUT
	463.2800	463.2700		140
	463.2800	463.2900	463.3000	TCH
	463.4200	463.4100	463.4125	140
	463.4200		463.4300*	D
	463.5400		463.5250	120
	463.5400	463.5500		AUT
	463.6600	463.6500		120
	463.6600	463.6700	463.6750	TCH
	463.7600	463.7500	463.7500	100
	463.7600	463.7700		AUT
	463.8000	463.7900		40
	463.8000		463.8125	D
	463.9400		463.9250	140
	463.9400	463.9500		AUT
	464.0800	464.0700		140

	464.0800	464.0900	464.1000	TCH
	464.2400	464.2300	464.2250	160
	464.2400		464 - 2500	D
	464.3400		464.3250	100
	464.3400	464.3500		AUT
	464.5000	464.4900		160
	464 - 5000	464.5100	464.5125	TCH
	464.6000	464.5900	464.5875	100
-	464-6000		464.6125	D
	464.7000		464.6875	100
	464.7000	464.7100	464.7125	TCH
	464.8400	464.8300	464.8250	140
	464.8400	464.8500		AUT
	464.9400	464.9300		100
	464.9400		464.9500	D
	465.1000		465.0900*	160
	465.1000	465.1100	465.1125	TCH
V	465.2400	465.2300	465.2250	140
	465.2400	465,2500		AUT
	465.3400	465.3300		100
	465.3400	465.3500	465.3500	TCH
	465.4000	465.3900	465.3875	60
	465.4000	701	465.4125	D
	465.5400		465.5250	140
	465.5400	465.5500		AU1'
	465.6600	465.6500		120

Anhage 11 Blatt 11

AUT/D/TCH

465.6600	465.6700	465.6750	TCH	
465.7400	465.7300	465.7250	80	

Balance:

AUT: 1920 kHz D: 1910 kHz TCH: 1910 kHz

Anlage 11 Blat 12

Devision of the frequency bands 450.000 MHz to 455.740 MHz and 460.000 MHz to 465.740 MHz into preferential subbands in the border area

D/POL/TCH

Limits of	First and Last	carrier	Country Spectrum
frequency band (MHz)	frequencies 20 KHz spacing (MHz)	25 kHz (MHz)	(kHz)
460.0000	460.0100	460.0125	POI.
1			
460.4600	460.4500	460.4500	460
460.4600	460.4700	460.4750	ICH
460.8900	460.8700	460.8750	430
460.8900		460.9000	D
461.3000	3,000	461.2875	410
461.3000		461.3125	D
461.4400		461.4250	140
461.4400	461.4500	461.4500	TCH
461.6000	461.5900	461.5875	160
461.6000	461.6100	461.6125	POL
461.6600	461.6500	461.6500	60
461.6600		461.6750	D
461.7600	allow Pic.	461.7500	100
461.7600	461.7700	461.7750	POI.
461.9600	461.9500	461.9500	200
461.9600	461.9700	461.9750	TCH
462.1000	462.0900	461.0875	140
462.1000		462.1125	D
462.1600		462.1500	60

D/POL/TCR

462.1600	462.1700	462.1750	POJ.
462.3600	462.3500	462.3500	200
462.3600		452.3750	D
462.5000		462.4875	140
462.5000	462.5100	462.5125	TCH
462.6400	462.6300	462.6250	140
462.6400	462.6500	462.6500	POL
462.7600	462.7500	462.7500	120
462.7600	462.7700	462.7750	TCH
462.8400	462.8300	462.8250	80
462.8400		462.8500	D
463.1400		463.1300*	300
463.1400	463.1500	463.1500	POL
463.2800	463.2700	463.2625	140
463.2800	463.2900	463.3000	тсн
463.4200	463.4100	463.4125	140
463.4200		463.4300*	D
463.5400		463.5250	120
463.5400	463.5500	463.5500	POL
463.6600	463.6500	463.6500	120
463.6600	463.6700	463.6750	TCH
463.8000	463.7900	463.7875	140
463-8000		463.8125	D
463.9400		463.9250	140
463.9400	463.9500	463.9500	POL
464.0800	464.0700	463.0750	140
464.0800	464.0900	464.1000	TCH
464.2400	464.2300	464.2250	160

D/POL/TCH

464.2400		464.2500	D
464.3400		464.3250	100
464.3400	464.3500	464.3500	POL
464.5000	464.4900	464.4875	160
464.5000	464.5100	464.5125	1'CH
464.6000	464.5900	464.5875	100
464.6000		464.6125	D
464.7000		464.6875	100
464.7000	464.7100	464.7125	TCH
464.8400	464.8300	464.8250	140
464.8400	464.8500	464.8500	POI,
464.9400	464.9300	464.9250	100
464.9400		464.9500	D
465.1000		465.0900*	160
465.1000	465.1100	465.1125	TCH
465.2400	465.2300	465.2250	140
465.2400	465.2500	465.2500	POL
465.3400	465.3300	465.3250	100
465.3400	465.3500	465.3500	TCH
465.4000	465.3900	465.3875	60
465.4000		465.4125	D .
465_5400		465.5250	140
465.5400	465.5500	465.5500	POL
465.6600	465.6500	465.6500	120
465.6600	465.6700	465.6750	TCH
465.7400	465.7300	465.7250	80
~~~~~~~~~~			

Anlage 11 Blot 15

D/POL/TCH

### Balance:

POL: 1920 kHz D: 1910 kHz TCH: 1910 kHz

*: Exception from 25-kHz-spacing due to control channels

### Devision of the frequency bands 450,000 MHz to 455.740 MHz and 460,000 MHz to 465,740 MHz into preferential subbands in the border area

D/POL

Limits of frequency band (MHz)	First and Last frequencies 20 KHz spacing (MHz)		Country Spectrum (kHz)
460.0000	460.0100	460.0125	POL
460.6500	460.6400	460.6375	650
460.6500	~~~~~~~~~	460.6625	1)
461.3000		461.2875	650
461.3000		461.3125	D
461.4600		461.4500	160
461.4600	461.4700	461.4750	POL
461.6600	461.6500	461.6500	200
461.6600		461.6750	D
461.7600		461.7500	100
461.7600	461.7700	461.7750	POL
461.9600	461.9500	461.9500	200
461.9600		461.9750	D
462.1600		462.1500	200
462.1600	462.1700	462.1750	POL
462.3600	462.3500	462.3500	200
462.3600		452.3750	D
462.5600	724	462.5500	200
462.5600	462.5700	462.5750	POL
462.7800	462.7700	462.7750	220

## D/POL

462.7800		462.8000	D
463.1400		463.1300*	360
463.1400	463.1500	463.1500	POL
463.3400	463.3300	463.3250	200
463.3400		463.3500	D
463.5400		463.5250	200
463.5400	463.5500	463.5500	POI.
463.7400	463.7300	463.7250	200
463.7400		463.7500	Ţ)
463.9400		463.9250	200
463.9400	463.9500	463.9500	POL
464.1400	464.1300	463.1250	200
464.1400		464.1500	D
464.3400		464.3250	200
464.3400	464.3500	464.3500	POL
464.5400	464.5300	464.5250	200
464.5400		464.5500	D
464.7400		464.7250	200
464.7400	464.7500	464.7500	POL
464.9400	464.9300	464.9250	200
464.9400		464.9500	D
465.1400	UD DOCUMENTAL	465.1250	200
465.1400	465.1500	465.1500	POL
465.3400	465.3300	465.3250	200
465.3400		465.3500	D
465.5400		465.5250	200

### D/POL

465.7400	465.7300	465.7250	200
465.5400	465.5500	465.5500	POL

### Balance:

POL: 2870 kHz D: 2870 kHz

*: Exception from 25-kHz-spacing due to control channels

Anlage 11 Blatt 19

## Devision of the frequency bands 450,000 MHz to 455,740 MHz and 460,000 MHz to 465,740 MHz into preferential subbands in the border area

### D/TCH

Limits of trequency band (MHz)	First and Last frequencies 20 KHz spacing (MHz)	25 kHz	Country Spectrum (kHz)
460.0000	460.0100	460.0125	TCH
460.2200	460.2100	460.2125	220
460.2200		460.2375	D
460.4600		460.4500	240
460.4600	460.4700	460.4750	TCH
460.8900	460.8800	460.8750	430
460.8900		461.0000	D
461.3000		461.2875	410
461.3000		461.3125	D
461.4400		461.4250	140
461.4400	461.4500	461.4500	TCN
461.6600	461.6500	461.6500	220
461.6600		461.6750	D
461.8400		461.8250	180
461.8400	461.8500	461.8500	TCH
462.1000	462.0900	462.0875	260
462.1000		462.1250	D
462.5000		462.4875	400
462.5000	462.5100	462.5125	TCH
462.6400	462.6300	462.6250	140

### D/TCH

462.6400		452.6500	D
462.7600		462.7500	120
462.7600	462.7700	462.7750	тсн
462.8400	462.8300	462.8250	80
462.8400		462.8500	· D
463.1400		463.1300*	300
463.1400	463.1500	463.1500	TCH
463.4200	463.4100	462.4125	280
463.4200		463.4300*	D
463.6000		463.5875	180
463.6000	463.6100	463.6125	ТСН
463.8000	463.7900	463.7875	200
463-8000		463.8125	D
464.0000		463.9875	200
464-0000	464.0100	464.0125	TCH
464.2400	464.2300	464.2250	240
464.2400		464.2500	D
464.4000		464.3875	160
464.4000	464.4100	464.4125	T'CH
464.6000	464.5900	464.5875	200
464.6000		464.6125	D
464.7000	and the state of	464.6875	100
464.7000	464.7100	464.7125	тсн
464.9000	464.8900	464.8875	200
464.9000		464.9125	D
465.1000		465.0900*	200
465.1000	465.1100	465.1125	TCH
465.4000	465.3900	465.3875	300

### D/TCH

465.4000		465.4125	D
465-6400		465.6250	240
465.6400	465.6500	465.6500	TCH
465.7400	465.7300	465.7250	100

### Balance:

AUT: 2870 kHz D: 2870 kHz

*: Exception from 25-kHz-spacing due to control channels

### Belegungen in Österreich und SUI im Bereich 450,000-451,300/460,000-461,300 MHz

AUT-D-SUI

Vorzug: SUI 449,99375-450,45625/459,99375-460,45625 MHz

AUT-Belegung: 1.)Feldkirch 450,350/460,350 MHz

2.) Schruns 450,400/460,400 MHz

3.)all AUT 460,175 MHz

4.)all AUT 460,250 MHz Ni8 NOGAR SUI Buchser Berg

Vorzug: AUT 450,45625-450,70625/460,45625-460,70625 MHz

SUI-Belegun, 460,650/450,650 NiB NOGAR Siblinger Rande

Vorzug: D 450,70625-451,3000/460,70625-461,3000 MHz

AUT-Belegung: 5.)Egg 450,725/460,725 MHz

6.)Schröcken -"- -"-

7.) Bludenz 450,775/460,775 MHz

8.) Bregenz 451,050/461,050 MHz

AUT-D

Vorzug: AUT 450,000-450,650/460,000-460,650 MHz

AUT-Belegung: 9.) Bad Ischl 450,375/460,375 MHz

10.)3t.Johann 450,450/460,450 MHz

11.) Hinterglemm 450,525/460,525 MHz

12.) Ried 450,600/460,600 MHz

Vorzug: D 450,650-451,300/460,650-461,300 MHz

AUT-Belegung: 13.) Salzburg 450,725/460,725 MHz

14.) Saalbach 450,775/460,775 MHz

Die fehlenden technischenParameter werden bis 30.April 1992 bermittelt werden.

## Vorschlag zur Aufteilung der Frequenzbereiche 451.3000 MHz - 455.7400 MHz und 461.3000 MHz - 465.7400 MHz in Präferenzteilbänder im Grenzgebiet

Bandgrenzen (MHz)	Erste und le Trägerfreque bei Kanalabs 20 kHz	nz	Anteil am Spektrum (kHz)
461.3000		461,3125	ם
461.4400		461.4250	140
461.4400	461.4500	F1	AUT/TCH
461,7400	461.7300		300
461.7400		461.750	D
461.8400		461.825	100
461.8400	461.8500		AUT/TCH
462.1400	462.1300		300
462.1400		462.1500	D
462.3400		462.3250	200
462.3400	462.3500		AUT/TCH
462.6400	462.6300		300
462.6400		462.6500	D
462.7400		462.7250	100
462.7400	462.7500		AUT/TCH
462.9400	i 462.9300		200
462,9400		462.9500	D
; 463.1400		463.1300 *	200
463.1400	463.1500		AUT/TCH
: 463.4200	463.4100		280
463,4200		463.4300 *	D
; 463.5400		463.5250	120

463.5500		AUT/TCH
463.7900		260
200	463.8125	D
	463.9250	140
463.9500		AUT/TCH
464.2300		300
	464.2500	D
	464.3250	100
464.3500		AUT/TCH
i 464.5900		260
	464.6125	D
	464.6875	100
464.7100		AUT/TCH
464.9300		240
	464.9500	D
	465.0900 *	160
465.1100		AUT/TCH
: 465.3900		300
	465.4125	ם
	465.5250	140
465.5500		AUT/TCH
465.7300		200
	\$463.7900 463.9500 464.2300 464.3500 464.5900 464.7100 464.9300 465.1100 465.3900	463.7900  463.8125 463.9250  464.2300  464.2500 464.3250  464.3500 464.6125 464.6875  464.7100 464.9300  464.9500 465.0900 *  465.1100 465.3900  465.4125 465.5250

#### Bilanz:

AUT/TCH 3830 kHz

D 1910 kHz

^{*} Abweichung vom 25 kHz-Raster aufgrund von Organisationskanälen

Anlage 14

## = Division of the frequency bands 455,740 MHz to 457,000 MHz and 465,740 MHz to 467,000 MHz into preferential subbands in the border area

### D/POL/TCH

Limits of frequency band		Country spectrum(kHz)	
(MHz)	(MH	z)	
465,7400	465,7500	465,7500	TCH
465,8400	465,8300	465,8250	100
465,8400	465,8500	465,8500	POL
465,9400	465,9300	465,9250	100
465,9400	465,9500	465,9500	D
466,1000	466,0900	466,0875	160
466,4000	466,1100	466,1125	TCH
466,2200	466,2100	466,2000	120
466,2200	466,2300	466,2250	D
466,3200	466,3100	466,3000	100
466,3200	466,3300	466,3250	POL
466,4600	466,4500	466,4500	140
466,4600	466,4700	466,4750	TCH
466,5800	466,5700	466,5750	120
466,5800	466,5900	466,5875	Ď
466,7400	466,7300	466,7250	160
466,7400	466,7500	466,7500	POL
466,9200	466,9100	466,9000	180
466,9200	466,9300	466,9250	TCH
467,0000	466,9900	466,9750	80

Anlage 15

# Division of the frequency bands 455,740 MHz to 457,000 MHz and 465,740 MHz to 467,000 MHz into preferential subbands in the border area

D/POL

Limits of frequency band	freque	last carrier encies Ccing 25 kHz	Country spectrum(kHz	
(MHz)	(MH	łz)	_22	
465,7400	465,7500	465,7500	POL	
465,9400	465,9300	465,9250	200	
465,9400	465,9500	465,9500	D	
466,1200	466,1100	466,1000	180	
466,1200	466,1300	466,1250	POL	
466,2000	466,1900	466,2000	80	
466,2000	466,2100	466,2250	D	
466,4200	466,4100	466,4000	220	
466,4200	466,4300	466,4250	POL	
466,4600	466,4500	466,4500	40	
466,4600	466,4700	466,4750	D	
466,4800			20	
466,4800	466,4900	466,5000	POL	
466,5800	466,5700	466,5750	100	
466,5800	466,5900	466,6000	D	
466,7800	466,7700	466,7750	200	
466,7800	466,7900	466,8000	POL	
467,0000	466,9900	466,9750	220	

Balance: POL = 640 kHz

D = 620 kHz

### Division of the frequency bands 450,000 MHz to 457,370 MHz and 460,000 MHz to 467,370 MHz into preferential subbands in the border area

### POL/TCH

Limits of frequency band (MHz)	First and Last frequencies 20 kHz spacing (MHz)	25 kHz	Country Spectrum (kHz)
·	460,0100 460,4500	460,0125 460,4500	
•	460,8700	460,8750	
460,8800 461,4400	460,8900 461,4300	460,9000 461,4250	POL
461,4400 461,6000	461,4500 461,5900	461,4500 461,5875	TCH
461,6000	461,6100 461,9500	461,6125	POL
461,9600 462,1600	461,9700 462,1500	•	

Anlage 16 Blatt 2

462,1600	462,1700	462,1750	POL
462,3600	462,3500	462,3500	200
	460 200		
462,3600	462,3700	452,3750	TCH
462,6400	462,6300	462,6250	280
462,6400	462,6500	462,6500	POL
462,7600	462,7500	462,7500	120
462,7600	462,7700	462,7750	TCH
463,1400	463,1300	463,1250	380
463,1400	463,1500	463,1500	POL
463,2800	463,2700	463,2625	140
			110
463,2800	463,2900	463,3000	TCH
463,4200	463,4100	463,4125	140
463,4200	463,4300	463,4250	POL
463,6600	463,6500	463,6500	240
463,6600	463,6700	463,6750	тсн
463,9400	463,9300	463,9250	280
463,9400	463,9500	463,9500	POL
464,0800	464,0700	464,0750	140
			mai
464,0800	464,0900	-	TCH
464,2400	464,2300	464,2250	160
464,2400	464,2500		POL
464,5000	464,4900	464,4875	260

Anlage 16 Blatt 3

464,5000	464,5100	464,5125	TCH
464,8400	464,8300	464,8250	340
464,8400	464,8500	464,8500	POL
465,0200	465,0100	465,0000	180
465,0200	465,0300	465,0250	TCH
465,2400	465,2300	465,2250	220
465,2400	465,2500	465,2500	POL
465,3400	465,3300	465,3250	100
465,3400	465,3500	465,3500	TCH
465,5400	465,5300	465,5250	200
465,5400	465,5500	465,5500	POL
465,6600	465,6500	465,6500	120
465,6600	465,6700	465,6750	POL
465,8400	465,8300	465,8250	180
465,8400	465,8500	465,8500	POL
466,0600	466,0500	466,0500	220
466,0600	466,0700	466,0750	ТСН
	466,2500	466,2500	200
466,2600	466,2700	466,2750	POL
466,4600	466,4500	466,4500	200
466,4600	466,4700		тсн
466,7200	466,7100		260

Anl	age		1	6
Bla	tt	4		

466,7200	466,7300	466,7250	POL
466,9200	466,9100	466,9000	200
466,9200	466,9300	466,9250	TCH
467,1800	467,1700	467,1750	260
467,1800	467,1900	467,2000	POL
467,3700	467,3700	467,3500	190

Balance: POL - 3690 kHz

TCH - 3680 kHz

					and chacutronia	7		a Shirt and a	2010		
POL/TCH	1	TCB .12 13	ě,	POL*	49 50		TCE		99 100	POL*)	124
104/Q	1	POL*)	26 29	29	A			90 91		POL*)	124
D/TCH/POL	1	TCH. 12 13	POL*) 28 29	29	Q		70 71	TCB	99 100	POL*)	124
D/TCE	1	TCB	25 26			ρ		60 00	Ĕ	rch .	124
D/AUT/TCH	1	AUT	25 26	٥	45 46 TCB54 5	55 D	74 75 AUT	06 68		TCH	119 CTI
D/AUT	1	AUT	75 35		Q	62 63	УОТ		76 97	Δ.	119 CT1
D/SVI/AUT	1	AUT 12 13	INS	37 38	Д	63 64	AUT	92 93	Q S	108 109	sur 124
Ins/a	4	Ins	25 26		a			87 88		SUI	124
105/4/0	2	SUI 12 13	P 28 29	62	٥		12 02	SUI	99 100	<b>a</b>	124
AUT/SUI	1 1	AUT 12 13	35	ins	49 50		AUT		99 100	INS	124
AUT/TCH**)	1 AUT	T 12 13	77	TCH	49 50		AUT		97 98	TCH	119 CT1
HWG/AUT	-	Hexagonalplan	alplan	39 40	O HING	59 60	AUT		99 100	BIRG	119 CT1
1/301	_	I 16 17	17 501	1	45 46		H	91 92		IUS	124
AUT/HRG/TCH	-	AUT 13 14	TCB 27 28	HWG 39 40	TCE 50	MWG 63	AUT	S S S S S S S S S S S S S S S S S S S	FO# 56	109 HMG	120 CT1 124
HRG/TCB	11	TCH 1	20 HTMG	40 40	TCB	53	HMG 79 TCE	CH 87 HWG	99 TCH	109 EBFG 112	113716 120 TCHHNG CT1 115419 124
GSM Kenal Wr.	سينا	10	01 10 10 20 20 30	40	andaman.	milmin 69			100	120 110 110 110 110 110 110 110 110 110	120 121
Ben	Benerkungen: f	1:f = 890,2	# 890,2 MRz + 0.2 * (n	(n - 1) HHz	£ = 935.2	MEZ + 0.2	* (r - 1) MHz	+ H V-	45 882		

Henerkungen:  $\frac{1}{3}$  = 890,2 MHz + 0,2 * (n - 1) MHz  $\frac{1}{3}$  ab 1995

3
N
N
9
3
Б
a
_

890 - 915 MHz 935 - 960 MHz

ŦĊĦ

GSM	91	Flugnavigation	=	119 CT1 124
D. eite Bundeelsoder				·
GSM 2 Betreber			#	119 CT1 124
neue Bundesländer		A STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR	l is	1

80 er Flugnavigation b. Ende 94,19 CT1 124

2 Betreiber

GSM

SUI.

1 124	
CT1	
119	
GSM	
74 75	
analog (NMT-900)	

HNG

124
119 CT1
119
GSM
GSM
digital (GSM)
, analog/digital (GSM)

AUT.

-			analo	analog (TACS)			74	75		GSM	-	118	119 CT1 124
J-WSD	GSM-Channel No.												
10	2	20	30	40	20	2	2	<b>2</b>	9	100	<b>5</b>	5	120 124
		in linns			_	արարայի արտարարարարարություն արտարարարարարարարարարարարարարարարարարար		سنسسا	4	ببلييييي	ninnin	111111	=======================================
Notes.	Notes: f, = 890, 2MHz + 0, 2 x (n-1) MHz	Hz . 0, 2 x (n	1-1) MHZ	fu - 93	5, 2 MHz . (	fu = 935, 2 MHz + 0, 2 x (n-1) MHz		fu . f45MHz					

## Anlage 19

Channel number dividing in the splitting cells in the border area between AUT and HNG in the lower band ( 890-898 / 935-943 MHz)

Cel	l ID	Sum No		HNG No.
Х	1	27	2	25
В	101	26	25	1
$\mathbb{B}$	2	26	19	7
В	106	26	1.4	12
В	105	27	2.5	2
X	2	27	2	25
В	104	26	10	16
В	103	2.7	22	5
B	4	26	26	0
В	107	27	1.1	16
В	5	26	11	15
B	304	26	1. O	16
B	109	27	16	11
В	11	26	25	1
X	4	27	5	22
В	111	26	24	2
В	300	27	2	25
В	112	27	6	21
B	113	26	16	10
В	114	27	22	5

Channel dividing in the splitting cells in the border area between AUT and HNG in the lower band ( 890 - 898 / 935 - 943 MHz)

AUT channels	
--------------	--

HNG channels

Cell ID	Sum No	Char bloc		Sum No	Chan bloc	
X 1	2	A2	A5	25	A2 5	A5 17
		29	4 1.			
			_		53	65
		-			77	89
					1.01 125	113 137
		****			1.49	161
			-		173	185
					197	209
		TOLG	atus.		221	233
					245	257
					269 293	281 305
			utus		31.7	-
B 101	25	СЗ	C6	1.	C3	C6
		11	23		***	~~
		35	47		-	-
		59	71		170	~
		83 107	95 119		-	
		131	143		-	
		155	167		~	
		1.79	191		***	
		203	215		-	
		227 251	239 263		~	
		201	287		275	
		299	311		275	***
B 2	19	АЗ	A6	7	АЗ	A6
		9				21
		33	~		_	45
		57	69		~	-
		81 105	93 117		_	
		129	141			
		153	165		_	
		177	189			-
			213		201	~
			237 261		225	~
		-	285		249 273	
		-	309		297	

HNG channels

Cell ID	Sum No	Chan block		Sum No	Chan bloc	
В 106	1.4	D3	D6	1.2	D3	D6
		12 36 60 84 108 132 156 180 204	24 48 72 96 120		228 252 276 300	144 168 192 216 240 264 288 312
B 1.05	25	D2	D5	2.	D2	D5
		6 30 54 78 102 126 150 174 198 222 246 	18 42 66 90 114 138 162 186 210 234 258		270	282
X 2	2	C1	C4	25	C1	C4
		27	39		3 51 75 99 123 147 171 195 219 243 267 <b>2</b> 91 <b>315</b>	15 63 87 111 135 <b>759</b> 183 207 231 255 279 303

·

HNG channels

Cell ID	Sum No	Chanr block		Sum No	Chan bloc	
B 104	10	D2	D5	16	D2	D5
		8 32 56 80 104 128 152 176 200 224			248 272 296	20 44 68 92 116 140 164 188 212 236 260 284 308
B 103	22	B1	B4	5	B1.	B4
		2 26 50 74 98 122 146 170 194 218 242	14 38 62 86 110 134 158 182 206 230 254		266 290 314	278 302
B 107	11	D1  4 28 52 76 100 124 148 172	D4  16 40 64	16	D1	D4 88 112 136 160 184 208 232 256 280 304

|

HNG channels

Cell ID	Sum No	Chanr block		Sum No	Chan bloc	
B 5	11	C3	C6	15	C3	C6
		11 35 59 83 107 131 155 179 203	23 477		227 251 275 299	71 95 119 143 167 191 215 239 263 287 311
B 304	10	АЗ	A6	16	АЗ	A6
		9 33 57 81 105 129 153 177 201 225			249 273 297	21 45 69 93 117 141 165 189 213 237 261 285 309
B 109	16	B2	B5	11	B2	B5
		6 30 54 78 102 126 150 174 198	18 42 66 90 11.4 138 162		222 246 270 294 318	186 210 234 258 282 306

### HNG channels

Cell ID	Sum No	Char bloc		Sum No	Chan bloc	
B 11	25	D2	D5	1	D2	D5
		8	20		_	
		32	44			
		56	68		-	_
		80	92		- respec	~
		104 128	116 140			-
		152	164		-	
		176	188		~	_
		200	212		~	
		224	236			-
		248	260 284		272	-
		296	308		<i>L. 1 C.</i> ,	
X 4	5	C1	C4	22	C1	C4
		3	15		-	
		27	39			
		51	_			63
			~		75 99	87 111
		mar.	~		123	135
					147	15 <b>9</b>
		_	er my		171	1.83
		~			195	207
			nad Vine		219 243	231 255
					267	279
		-	-		291	303
		And A	- mar		315	
B 111	24	C3	C6	2	С3	C6
		11	23			
		35	47		-	_
		59	71.		_	
		83	95		~	
		107 131	119 143			
		155	167		_	
		179	191		-	
		203	215			
		227 251	239		_	263
		- - -	287		275	203
		299	311		-	~

٠.,

HNG channels

Cell ID	Sum No	Chan bloc		Sum No		Channel blocks	
В 300	2	A2	A5	25	A2	A5	
		29	41.		5 -53 77 101 125 149 173 197 221 245 269 293 317	17 -65 89 113 137 161 185 209 233 257 281 305	
B 112	6	B1	B4	21	B1	B4	
		2 26 50	14 38 62		74 98 122 146 170 194 218 242 266 290 314	86 110 134 158 182 206 230 254 278 302	
B 113	16	D3  12 36 60 84 108 132 156 180 204	D6 24 48 72 96 120 144 168	10	D3	D6	

AUT channels

HNG channels

Cell ID	Sum No	Chan bloc		Sum	No		nnel ocks
B 114	2.2	C1.	C4		5	Ci	C4
		3	15				na ener
		27	39				
		51	63				
		75	87				~ ~*
		99	111			-	
		123	135				
		1. 4 '7	159			-	
		1.71	183			-	er
		195	207			-	
		219	231				
		243	255			-	
						267	7 279
		1001	1 des			291	303
		-	_			315	5 -

930 830 **Extended TACS, Extended GSM** Flugnavigation (FN 704) Flugnavigation (bis Ende 1994) militär. Mehrkanahifu (FX, ML) Flugnavigation (FN 704) 875 - 886 MHz 920 - 933 MHz 920 920 920 920 920 3 888 288 887 888 888 888 Frequenznutzung 887 CT1-xxx CT1-xxl CTT CT 886 888 885 Extended TACS, Extended GSM zivle - militär. Nutzung militär. Mehrkanalrifu (FX, ML) Extended GSM (ab Mitte 1992) militarische Nutzung zivile Nutzung D neue Bundesländer D alte Bundesländer A 프 3 875 978

932 933

CTT

**832 833** 

CTT

933

Anlagezo 933 933 932 932 CT+xxx) CT1,xxl 938 88 Extended GSM (ab Mitte 1992) 920

NUTZUNG MILIT'A'RISCHE

920

83

NUTZUNG

MILITARISCHE

875

xx) gesport für Extended GSM xxx) CT1- geplant

876

887 888

882

933

## Betreff: Frequenzvereinbarung , Wien 1986

Um einen grenzweiten Betrieb der 15 Organisationskanäle (laut Punkt 3 des Expertengespräche vom 11.6 - 14.6.1991 in Wien) zu ermöglichen, ist der störungsfreie Betrieb folgender Ersatzfrequenzen notwendig.

#### Gemeinsame Merkmale:

```
1b
      2
 2c
      1.9.1991
 4b
      AUT
 4d
      15 km
 5a
      LCL
 6a
      FB
                                 ML
 6b
      CP
 6d
      L
7 a
     14KOF3E
 9d
      Vertikal
10b
      H24/H24
 1a
      465,610 MHz
4a
      Kufstein
                                      R/Kufstein
4 C
      121500/473800
4h
      726 m
8b
      10 W
9a
     ND
9n
      150 m / 310 Grad
5e
      455,610 MHz
      465,310, 464,930, 462,110 MHz
1a
4a
     Thalgau
                                      R/Thalgau
4c
      131650/474930
4h
     800 m
8b
     4 W
9a
     ND
9n
     Neg.
5e
     455,310, 455,930, 452,110 MHz
```

```
463,870, 463,030, 462,190 MHz
1a
                                     R/Obernberg
     Obernberg
4a
     132628/481748
4C
     372 m
4h
     20 W
8b
     ND
9a
     52 m / 315 Grad
9n
     453,870, 453,030, 452,190 MHz
     461,810 MHz
1a
4 a
     Ehrwald
                                     R/Ehrwald
4c
     105500/472400
     820 m
4h
     25 W
8b
9a
     ND
9n
     90 m / 360 Grad
5e
     451,810 MHz
1a
     465,570, 465,370, 462,530 MHz
     Hallein
4 a
                                     R/Hallein
     130707/474136
4 C
4h
     530 m
8b
     5 W
9a
     ND
9n
     340 m / 360 Grad
5e
     455,570, 455,370, 452,530 MHz
     461,490 MHz
1a
4a
     Achenkirch
                                     R/Achenkirch
     114200/473300
4c
4h
     750 m
     25 W
8b
9a
     ND
9n
     70 m / 320 Grad
     451,490 MHz
5e
     465,230, 461,570, 461,530 MHz
1a
4a
     Braunau
                                     R/Braunau
4c
     130253/481529
4h
     350 m
8b
     12 W
     90 Grad
9a
     8 m / 270 Grad
9n
5e
     455,230, 451,570, 451,530 MHz
```

```
462,330 MHz
1a
                                    R/Raab
4a
     Raab
     133856/482113
4 C
     380 m
4h
     30 W
8b
9a
     ND
     30 m / 275 Grad
9n
5e
    452,330 MHz
    463,270, 462,610 MHz
1a
                                    R/Lichtenberg
4a
     Lichtenberg
     132535/475559
4 C
4h
     860 m
     20 W
8b
9a
     ND
9n
     300 m / 320 Grad
     453,270, 452,610 MHz
5e
     464,270, 462,670 MHz
1a
4a
     Schärding
                                    R/Schärding
     132600/482718
4 C
4h
     320 m
     8 W
8b
     360 Grad
9a
     Neg.
9n
5e
     454,270, 452,670 MHz
1a
     462,110 MHz
     Engelhartszell
4a
                                    R/Engelhartszell
     134100/482800
4c
4h
     300 m
8b
    10 W
9 a
    ND
     260 m / 270 Grad
9n
    452,110 MHz
5e
     464,950, 464,830, 463,870, 463,010 MHz
1a
4a
     Salzburg
                                    R/Salzburg
4c
     130300/479000
4h
     420 M
8b
     10 W
9a
    ND
9n
    100 m / 330 Grad
5e
    454,950, 454,830, 453,870, 453,010 MHz
```

4c 4h 8b 9a	464,910 MHz Polling 131700/481356 385 m 20 W ND 29 m / 280 Grad 454,910 MHz	R/Polling
4 a	465,230 MHz Mattighofen 130911/480615 454 m 20 W ND Neg. 455,230 MHz	R/Mattighofen
1a 4a 4c 4h 8b 9a 9n 5e	462,730 MHz Schneegattern 131800/480117 560 m 10 W ND 82 m / 270 Grad 452,730 MHz	R/Schneegattern
1a 4a 4c 4h 8b 9a 9n 5e	462,610 MHz Aigen 135536/483824 870 m 7 W ND 188 m /270 Grad 452,610 MHz	R/Aigen
4 a 4 c	462,390 MHz Vöcklabruck 133900/480100 430 m 30 W ND 35 m / 295 Grad 452,390 MHz	R/Vöcklabruck

Nicht berücksichtigt wurde die Frequenzsituation in dem Bundesland Vorarlberg. Hier sind die Ergebnisse der block-weisen Aufteilung des Frequenzbereiches 450.000 - 455.740 / 460.000 - 465.740 MHz zwischen Deutschland, Schweiz und Österreich abzuwarten.

# Protokol1

über Expertengespräche zwischen Vertretern der deutschen, der ungarischen, der polnischen, der schweizerischen, der tschechischen und slowakischen sowie der österreichischen Verwaltung

Wien, 27. März 1992

Für die	österreichische Verwaltung:	G. Lettner
Für die	deutsche Verwaltung:	E. Smje
Für die	ungarische Verwaltung:	
Für die	polnische Verwaltung:	
Für die	schweizerische Verwaltung:	••••••
	tschechische und sche Verwaltung:	

#### Protokoll

über Expertengespräche zwischen Vertretern der deutschen, der ungarischen, der polnischen, der schweizerischen, der tschechischen und slowakischen sowie der österreichischen Verwaltung

Wien, 27. März 1992

Für	die	österreichische Verwaltung:	G. Lettner
Für	die	deutsche Verwaltung:	•••••••
Für	die	ungarische Verwaltung:	F. HORVATH
Für	die	polnische Verwaltung:	••••••
Für	die	schweizerische Verwaltung:	••••••
		tschechische und sche Verwaltung:	

# MINISTERIUM FÜR VERKEHR, NACHRICHTEN UND WASSERWESEN DER REPUBLIK UNGARN

BUDAPEST Dob u. 75-81. 1077 Fax: 36 1 1228695 Tel.: 36 1 1220220 Tlx.: 22 5729

Budapest, 06 May 1992. **255.113/1992.** 

Dipl.-Ing. Gerd LETTNER

#### BUNDESMINISTERIUM FÜR ÖFFENTLICHE WIRTSCHAFT UND VERKEHR

Generaldirektion für die Post- und Telegraphenverwaltung

# WIEN

Sehr geehrter Herr LETTNER!

Bezugnehmend auf Ihren Schreiben vom 24. April 1992 GZ 102483/ III-ZB/92, schicke ich anliegend für Sie das von der ungarischen Verwaltung unterzeichneten Unterschriftenblatt.

Ich bitte Sie um eine Kopie von allen Originalunterschriftenblätter zu mir rücksenden.

Anlage: 1

Mit freundlichen Grüssen

/ /: Kálmán TÓTH :/

Leiter der Abteilung für

Frequenzmanagement

# Protokoll

über Expertengespräche zwischen Vertretern der deutschen, der ungarischen, der polnischen, der schweizerischen, der tschechischen und slowakischen sowie der österreichischen Verwaltung

Wien, 27. März 1992

Für	die	österreichische Verwaltung:	G. Lettner
Für	die	deutsche Verwaltung:	•••••••••
Für	die	ungarische Verwaltung:	•••••••
Für	die	polnische Verwaltung:	
Für	die	schweizerische Verwaltung:	
		tschechische und sche Verwaltung:	Halouskova '

# FEDERAL MINISTRY OF POSTS AND TELECOMMUNICATIONS

CZECH AND SLOVAK FEDERAL REPUBLIC

Address: CS-125 02 Prana 1

Klimentská 27

Capie Address: Gentel Prana

Phone: (+42 2) 203100 Telex: 111 410 ptt c

Fax: (+42 2) 236 83 79

Bundesministerium für öffentliche Wirtschaft und Verkehr

Generaldirektion für Post- und Telegraphenverwaltung

Postgasse 8

1011 WIEN

Unser Zeichen 4831/92

Ihr Zeichen GZ 102483/III-ZB/92

Betreff: Expertengespräche D, HNG, POL, SUI, TCH, AUT; 23. bis 27. März 1992 in Wien

Sehr geehrte Damen und Herren!

Wir danken Ihnen für Einsendung des Protokolles über Expertengespräche zwischen Vertretern der deutschen, der ungarischen, der polnischen, der schweizerischen, der tschechischen und slowakischen sowie der österreichischen Verwaltung.

In der Anlage übermitteln wir Ihnen der von unserer Verwaltung unterzeichneten Unterschriftenblatt.

Mit freundlichen Grüßen

Leiter des Bereiches Inspektion von Fernmeldewesen und Frequenzen

Dipl.-Ing. Bujnovský

Anlage 1

# Protokoll

über Expertengespräche zwischen Vertretern der deutschen, der ungarischen, der polnischen, der schweizerischen, der tschechischen und slowakischen sowie der österreichischen Verwaltung

Wien, 27. März 1992

Für die	österreichische Verwaltung:	G. Lettner
Für die	deutsche Verwaltung:	•••••••••
Für die	ungarische Verwaltung:	
Für die	polnische Verwaltung:	Gome
Für die	schweizerische Verwaltung:	•••••••
	tschechische und sche Verwaltung:	

# Protokoll

über Expertengespräche zwischen Vertretern der deutschen, der ungarischen, der polnischen, der schweizerischen, der tschechischen und slowakischen sowie der österreichischen Verwaltung

Wien, 27. März 1992

Für	die	österreichische Verwaltung:	G. Lettner
Für	die	deutsche Verwaltung:	• • • • • • • • • • • • • • • • • • • •
Für	die	ungarische Verwaltung:	• • • • • • • • • • • • • • • • • • • •
Für (	die	polnische Verwaltung:	•••••
Für (	die	schweizerische Verwaltung:	R. Klingler
		tschechische und che Verwaltung:	

# **Anhang F.11**

zu den Nutzungsbedingungen im Verfahren betreffend Frequenzzuteilungen in den Frequenzbereichen 800 MHz, 900 MHz und 1800 MHz:

Vorzugsfrequenzabkommen 900 MHz 5

# **AGREEMENT**

between the Administrations of Austria, the Czech Republic, Germany, Liechtenstein and Switzerland

on the frequency coordination in the frequency bands 880 – 890/925 - 935 MHz (E-GSM)

Vienna, 27 February 2002

#### 1. Introduction

In the framework of the "Vienna Agreement (Berlin 2001)" the Administrations of Austria, the Czech Republic, Germany, Liechtenstein and Switzerland concluded this Agreement for the purpose of the frequency coordination for GSM systems in the frequency bands 880 - 890/925 - 935 MHz. The relevant provisions of the "Vienna Agreement (Berlin 2001)" and CEPT Rec. T/R 20-08 shall be applied unless otherwise laid down in this agreement.

#### 2. Principles - Background

- 2.1 The Administrations mentioned above deemed it necessary to conclude an agreement on the allotment of the preferential frequencies for GSM systems in the frequency bands 880 890/925 935 MHz. The channel arrangement used in this agreement is in conformity with I-ETS 300 609-1 and shown in Annex 1.
- 2.2 Operators shall have the possibility to cooperate in order to minimise interference and to achieve the most efficient use of the available spectrum. Therefore the provisions laid down in the "Agreement between administrations concerned regarding the approval of arrangements between operators" shall be applied.

#### 3. Technical provisions

- 3.1 The preferential frequency partitioning is described in Annex 2.
- 3.2 Preferential frequencies may be used without coordination with a neighbouring country if the fieldstrength of each carrier produced by the base station does not exceed a value of 19 dBµV/m at a height of 3 m above ground at a distance of 15 km inside the neighbouring country.
- 3.3 Non-preferential frequencies may be used without coordination with a neighbouring country if the fieldstrength of each carrier produced by the base station does not exceed a value of 19 dB $\mu$ V/m at a height of 3 m above ground at the border line.

#### 4. Exchange of information

Notifications of base stations will be exchanged on explicit request of an administration only.

#### 5. Procedure in case of harmful interference

In case of harmful interference the Administrations affected shall inform each other and endeavour to achieve mutually satisfactory solution.

## 6. Revision of this agreement

This Agreement can be revised in light of administrative, regulatory or technical developments at the proposal of any Signatory Administration with the agreement of all other Signatory Administrations.

# 7. Withdrawal from this Agreement

Any Administration may withdraw from this Agreement by the end of a calendar month by giving notice of its intention at least six months in advance. A declaration to that effect shall be addressed to the handling administration of the "Vienna Agreement (Berlin 2001)". Frequency assignments made within the framework of this Agreement prior to the date of entry into force of the withdrawal shall remain valid and be protected according to their status.

# 8. Language of the Agreement

The original text of this Agreement exists in English and is retained at the handling administration of the" Vienna Agreement (Berlin 2001)".

# 9. Date of entry into force of the Agreement

This Agreement enters into force for the Administrations of Austria, Liechtenstein and Switzerland at the date of its signature.

For the Czech Administration and the German Administration this Agreement will enter into force after its announcement. In the meantime the Administrations of Austria and Switzerland can use all frequencies in the bands 880 - 890/925 - 935 MHz on the basis of non-preferential frequencies (see Item 3.3).

For the Austrian Administration

For the Czech Administration

For the German Administration

For the Administration of Liechtenstein

For the Swiss Administration

TABLE OF FREQUENCY - CHANNEL NUMBER 880 - 890/925 - 935 MHz

Ch. NO	Frequ	uency
975	880,2	925,2
976	880,4	925,4
977	880,6	925,6
978	880,8	925,8
979	881	926
980	881,2	926,2
981	881,4	926,4
982	881,6	926,6
983	881,8	926,8
984	882	927
985	882,2	927,2
986	882,4	927,4
987	882,6	927,6
988	882,8	927,8
989	883	928
990	883,2	928,2
990	883,4	928,4
991	883,6	928,6
993	883,8	928,8
994	884	929
997	884,2	929,2
967	884,4	929,2
997	884,6	929,6
998	884,8	929,8
	885	930
999 1000	885,2	930,2
1000	885,4	930,2
	· · · · · · · · · · · · · · · · · · ·	930,4
1002	885,6	
1003	885,8	930,8 931
1004	886	
1005	886,2	931,2
1006	886,4	931,4
1007	886,6	931,6
1008	886,8	931,8
1009	887	932
1010	887,2	932,2
1011	887,4	932,4
1012	887,6	932,6
1013	887,8	932,8
1014	888	933
1015	888,2	933,2
1016	888,4	933,4
1017	888,6	933,6
1018	888,8	933,8
1019	889	934
1020	889,2	934,2
1021	889,4	934,4
1022	889,6	934,6
1023	<b>88</b> 9,8	934,8

$$FI(n) = 890 + 0,2(n - 1024) MHz$$

$$Fu(n) = Fl(n) + 45 \text{ MHz}$$

for 
$$975 \le n \le 1023$$

# Preferential frequency partitioning in the E-GSM bands

975 982 AUT	983 CZE	066	991	666 <b>Q</b>	1000 1007 AUT	1008 1015 CZE	1016	1023 <b>D</b>
S	8		!	6	8	8		80
AUT/D 975 AUT	987   988	8	۵	666	1000 AUT	1011 1012	۵	1023
13			12		12		12	
AUT/D/SUI								
975 AUT	983 SUI	066	991	<b>D</b>	1000 1007 SUI	1008 1015 AUT	1016	1023 <b>D</b>
8	8			6	æ	ω		8
UT/SUI								
975 982 AUT	983	Ins	995	996 999 AUT	1000 1007 SUI	COS AUT	1019	1020-1023 <b>SUI</b>
8	-	12		2	8	12		4
UT/LIE'SUI								
975 982 AUT	983 SUI	066	991	999 LIE	1000 1007 SUI	1008 1015 AUT	1016	1023 LIE
8	8			6	80	8		8
ZE/D								
975 CZE		066	991		1007 D	1008 1015 CZE	1016-	1023 <b>D</b>
					17	c		o

# **Anhang F.12**

zu den Nutzungsbedingungen im Verfahren betreffend Frequenzzuteilungen in den Frequenzbereichen 800 MHz, 900 MHz und 1800 MHz:

Vorzugsfrequenzabkommen 1800 MHz 1

# Agreement

between the telecommunications administrations of

Austria, Croatia, the Czech Republic, Hungary, the Slovak Republic and Slovenia

concerning the allotment of preferential frequencies and the coordination of systems using DCS 1800 standards in the frequency bands 1710-1785 MHz and 1805-1880 MHz

#### 1. Introduction

The telecommunications administrations parties hereto concluded this agreement for the purpose of the frequency coordination of systems using the DCS 1800 standards.

## 2. Principles - Background

Administrations parties hereto deemed it necessary to conclude an agreement on the allotment of preferential frequencies for DCS 1800 systems in conformity with the CEPT Recommendation T/R 22-07.

Such an allotment of preferential frequencies could form a common basis for complementary bilateral coordination agreements in which the compatibility with the fixed service should be taken into account.

When DCS 1800 systems are operated in neighbouring countries, the Vienna Agreement of 1993 shall be applied for the coordination procedure in the frequency bands 1710-1785 MHz and 1805-1880 MHz.

In order to enable each administration to decide on its own in which subbands DCS 1800 may be introduced and to decide on the number of operators the entire band was taken into account.

The entire band is divided into a number of subbands in which equal access to the spectrum is ensured for each administration. This enables each administration, if appropriate, to provide for equal coordination conditions for each DCS 1800 operator.

- 3. Coordination between DCS 1800 systems and technical provisions
- 3.1 The alloment of preferential frequencies can be found in Annex 1.

- 3.2 Preferential frequencies may produce a field strength not exceeding 25 dB $\mu$ V/m at 3 m above ground at a distance of 15 km in the neighbouring country.
- 3.3 Non-preferential frequencies may produce a field strength not exceeding 25 dB $\mu$ V/m at 3 m above ground at the border to the neighbouring country.
- 3.4 The coordination procedures laid down in the Vienna Agreement, 1993, shall be applied.
- 3.5 Propagation criteria for the calculation of the interfering field strength are described in Annex 2.
- 3.6 For adding multiple interferers, the simplified algorithm described in Annex 3 shall be applied.
- 3.7 The technical parameters described in Annex 4 shall be used.
- 4. Coordination between DCS 1800 systems and fixed services:

The coordination of frequencies between DCS 1800 systems and fixed services shall be based on complementary bilateral agreements covering the entire frequency bands 1710-1785 MHz and 1805-1880 MHz. These bilateral agreements should take into account the allotment of preferential frequencies laid down in this agreement as far as possible.

# 5. Date of entry into force

This agreement will enter into force on a bilateral or trilateral basis concerning those parts of the frequency bands 1710-1785 MHz and 1805-1880 MHz for which all the involved administrations have informed each other of their intention to put DCS 1800 systems into operation.

As an exception, if a coordination with the fixed services is required by at least one of the involved administrations, the date of entry into force of this agreement will be subject to signing the complementary agreement.

For the Administration of Austria:

G. Lettner

For the Administration of Croatia:

M. Zadro

For the Administration of the Czech Republic:

J. Novotny

For the Administration of Hungary:

A. Birkenheuer

For the Administration of the Slovak Republic:

V. Podhorsky

For the Administration of Slovenia:

I. Lampe

Annex 1

Page 1

Preferential division of the frequency band

1710 - 1785 / 1805 - 1880 MHz for DCS 1800

29.09.1994

frequency band					1) 01/1	(805) - 172	1710 (1805) - 1725 (1820) MHz	Z				
channel number	512-518	519 - 524	525 - 530	531 - 536	537 - 543	544 - 549	550 - 555	556 - 561	562 - 568	569 - 574	575 - 580	581 - 586
no of channels	_	9	9	9	7	9	9	9	7	9	9	9
AUT/D/CZE	AUT	AUT	AUT	Q	Q	D	D 556	CZE	CZE	CZE	CZE	CZE
AUT/CZE	AUT	AUT	AUT	AUT	AUT	AUT	CZE	CZE	CZE	CZE	CZE	CZE
AUT/CZE/SVK	AUT	AUT	AUT	SVK	SVK	SVK	SVK 556	CZE	CZE	CZE	CZE	CZE
CZE/SVK	CZE	CZE	SVK	SVK	SVK	SVK	SVK	SVK	CZE	CZE	CZE	CZE
AUT/SVK	AUT	AUT	AUT	AUT	SVK	SVK	SVK	SVK	SVK	SVK	AUT	AUT
AUT/SVK/HNG	AUT	AUT	AUT	SVK	SVK	SVK	SVK 556	HNG	HNG	HNG	HNG	HNG
AUT/HNG	AUT	AUT	AUT	AUT	AUT	AUT	HNG	HNG	HNG	HNG	HNG	HNG
AUT/HNG/SVN	AUT	AUT	AUT	SVN	SVN	SVN	SVN 556	HNG	HNG	HNG	HNG	HNG
AUT/SVN	AUT	AUT	AUT	AUT	SVN	SVN	SVN	SVN	SVN	SVN	AUT	AUT
AUT/SVN/I	AUT	AUT	AUT	SVN	SVN	SVN	SVN 556	_		_		_
HRV/HNG/SVN	HRV	HRV	HRV	SVN	SVN	SVN	SVN 556	HNG	HNG	HNG	HNG	HNG
HRV/HNG	HRV	HRV	HRV	HRV	HRV	HRV	HNG	HNG	HNG	HNG	HNG	HNG
HRV/SVN	HRV	HRV	HRV	HRV	SVN	SVN	SVN	SVN	SVN	SVN	HRV	HRV
HNG/SVK	HNG	HNG	SVK	SVK	SVK	SVK	SVK 556	HNG	HNG	HNG	HNG	HNG
HNG/SVN	HNG	HNG	SVN	SVN	SVN	SVN	SVN 556	HNG	HNG	HNG	HNG	HNG

The numbering of the channels is defined in Recommendation GSM 05.05 (Version 4.5.0). Channel number n corresponds to a carrier frequency Fu(n) in the upper band, defined by the following equations (frequencies are in MHz):

 $FI(n) = 1710,2 + 0,2^{*}(n - 512)$ Fu(n) = FI(n) + 95 Page 2 644 - 649 | 650 - 655 | 656 - 661 HNG HNG HNG HNG HNG SVK HNG SVN SVN CZE 9 HNG HNG SVK HNG SVN HNG CZE CZE CZE CZE SVN HNG HNG SVN HNG CZE CZE SVK HNG HNG HNG SVN 9 631 - 636 | 637 - 643 HNG SVN HNG HNG HNG CZE CZE CZE CZE SVK HNG SVN HNG CZE CZE CZE SVK SVK HNG HNG SVN HNG HNG SVN Preferential division of the frequency band 9 1710 - 1785 / 1805 - 1880 MHz for DCS 1800 1725 (1820) - 1740 (1835) MHz 625 - 630 SVN SVN SVK SVK SVK HNG SVN SVN 9 594 - 599 | 600 - 605 | 606 - 611 | 612 - 618 | 619 - 624 | CZE 618 HNG 618 HNG SVN SVN SVK SVK SVK SVK SVN SVK 9 618 616 616 616 616 616 616 SVN HRV SVK SVK AUT AUT HRV 615 **AUT 615** 615 **AUT 615 AUT 615 AUT 615** SVK AUT AUT HRV HRV SVK SVN AUT 9 SVK SVK AUT HRV AUT AUT HRV AUT AUT AUT AUT 9 599 HNG 600 HNG 600 AUT HRV HRV AUT AUT AUT AUT AUT AUT 9 587 - 593 HNG HNG CZE HNG HNG HRV CZE CZE AUT HRV frequency band channel number HRV/HNG/SVN AUT/HNG/SVN no of channels AUT/CZE/SVK AUT/SVK/HNG AUT/D/CZE AUT/SVN/I **HRV/HNG** AUT/HNG **AUT/SVN** HRV/SVN HNG/SVN HNG/SVK CZE/SVK **AUT/SVK** 29.09.1994 Annex 1

Page 3 731 - 736 HNG HRV CZE AUT AUT AUT AUT AUT 9 725 - 730 729 728 | 729 728 729 728 729 728 | 729 HNG AUT CZE AUT 9 728 719 - 724 HNG SVN CZE SVK 9 CZE HNG HNG 706 - 711 | 712 - 718 HNG SVK HNG HNG HNG SVN CZE CZE CZE CZE SVN SVK SVK SVK SVK HNG SVN SVN SVN Preferential division of the frequency band 9 1710 - 1785 / 1805 - 1880 MHz for DCS 1800 1740 (1835) - 1755 (1850) MHz 700 - 705 SVK SVK SVK SVK HNG SVN SVN 9 694 - 699 SVN SVN SVN SVN SVK SVK SVK SVK AUT 9 687 - 693 SVN SVN SVN SVK SVK SVK SVK SVK SVK 681 - 686 SVK AUT SVN AUT SVN SVK AUT 9 675 - 680 AUT HRV AUT SVK AUT AUT AUT AUT AUT 9 669 - 674 AUT AUT AUT AUT AUT AUT 662 - 668 AUT AUT AUT AUT AUT AUT / frequency band channel number **AUT/SVK/HNG** HRV/HNG/SVN **AUT/HNG/SVN** no of channels AUT/CZE/SVK AUT/D/CZE **AUT/HNG** AUT/SVN/I **AUT/SVN AUT/CZE** CZE/SVK **AUT/SVK** 29.09.1994 Annex 1

HRV HNG HNG

HNG

HNG

HNG

HNG

SVN

HNG

SVN

HRV

HRV

HRV

HHV

HRV

HHV

HRV/HNG HRV/SVN HNG/SVK HNG/SVN

HRV

SVN

SVK

SVK

HRV

HNG

HNG

Page 4 Preferential division of the frequency band Annex 1

1710 - 1785 / 1805 - 1880 MHz for DCS 1800

29.09.1994

frequency band					1755 (1	850) - 1770	1755 (1850) - 1770 (1865) MHz	Ł				
channel number	737 - 743	737 - 743   744 - 749	750 - 755	756 - 761	762 - 768	769 - 774	775 - 780	781 - 786	787 - 793	794 - 799	800 - 805	806 - 811
no of channels	7	9	9	9	7	9	9	9	7	9	9	9
AUT/D/CZE	AUT	AUT 750	Q	Q	Q	Q	٥	Q	CZE	CZE	CZEI	805 AUT
AUT/CZE	AUT	AUT	AUT	AUT	AUT	AUT	AUT	CZE	CZE	CZE	CZE	CZE
AUT/CZE/SVK	AUT	AUT 750	SVK	SVK	SVK	SVK	SVK	SVK	CZE	CZE	CZE	805 AUT
CZE/SVK	CZE	CZE 7	749 SVK	SVK	SVK	SVK	SVK	SVK	CZE	CZE	CZE	CZE
AUT/SVK	AUT	AUT	AUT	AUT	SVK	SVK	SVK	SVK	SVK	SVK	AUT	AUT
AUT/SVK/HNG	AUT	AUT 750	SVK	SVK	SVK	SVK	SVK	SVK	HNG	HNG	HNGI	805 AUT
AUT/HNG	AUT	AUT	AUT	AUT	AUT	AUT	AUT	HNG	HNG	HNG	HNG	HNG
AUT/HNG/SVN	AUT	AUT 750	SVN	SVN	SVN	SVN	SVN	SVN	HNG	HNG	HNG	805 AUT
AUT/SVN	AUT	AUT	AUT	AUT	SVN	SVN	SVN	SVN	SVN	SVN	AUT	AUT
AUT/SVN/I	AUT	AUT 750	SVN	SVN	SVN	SVN	SVN	SVN	_	_		805 AUT
HRV/HNG/SVN	HRV	HRV 750	SVN	SVN	SVN	SVN	SVN	SVN	HNG	HNG	HNG	805 HRV
HRV/HNG	HRV	HRV	HRV	HRV	HRV	HRV	HRV	HNG	HNG	HNG	HNG	HNG
HRV/SVN	HRV	HRV	HRV	HRV	SVN	SVN	SVN	SVN	SVN	SVN	HRV	HRV
HNG/SVK	HNG	742 SVK	SVK	SVK	SVK	SVK	SVK	SVK	HNG	HNG	HNG	HNG
HNG/SVN	HNG	742 SVN	SVN	SVN	SVN	SVN	SVN	SVN	HNG	HNG	HNG	HNG

Annex 1		:										Page 5
			Prefe	Preferential o	division of the frequency band	of the fre	quency	band				
29. 09. 1994			11	10 - 1785	1710 - 1785 / 1805 - 1880 MHz for DCS 1800	180 MHz fa	or DCS 18	8				
frequency band					1770 (11	865) - 1785	1770 (1865) - 1785 (1880) MHz	zp				
channel number	812-818	819 - 824	825 - 830	831 - 836	837 - 843	844 - 849	850 - 855	856 - 861	862 - 867	868 - 873	874 - 879	880 - 885
no of channels	7	9	9	9	7	9	9	9	9	9	9	9
AUT/D/CZE	AUT	AUT	AUT	AUT	AUT 845	0	0	Q	CZE	CZE	CZE	CZE
AUT/CZE CZE	813 AUT	AUT	AUT	AUT	AUT	AUT	AUT	CZE	CZE	CZE	CZE	CZE
AUT/CZE/SVK	AUT	AUT	AUT	AUT	AUT 845	SVK	SVK	SVK	CZE	CZE	CZE	CZE
CZE/SVK	CZE	CZE	SVK	SVK	SVK	SVK	SVK	SVK	CZE	CZE	CZE	CZE
AUT/SVK	AUT	AUT	AUT	AUT	SVK	SVK	SVK	SVK	AUT	AUT	AUT	AUT
AUT/SVK/HNG	AUT	AUT	AUT	AUT	AUT 845	SVK	SVK	SVK	HNG	HNG	HNG	HNG
AUT/HING HING	BI3 AUT	AUT	AUT	AUT	AUT	AUT	AUT	HNG	HNG	HNG	HNG	HNG
AUT/HNG/SVN	AUT	AUT	AUT	AUT	AUT 845	SWN	SVN	SVN	HNG	HNG	HNG	HNG
AUT/SVN	AUT	AUT	AUT	AUT	SVN	SVN	SVN	SVN	AUT	AUT	AUT	AUT
AUT/SVN/I	AUT	AUT	AUT	AUT	AUT 845	SVN	SVN	SVN	-	_	-	-
HRV/HNG/SVN	HRV	HRV	HRV	HRV	HRV 845	SWN	SVN	SVN	HNG	HNG	HNG	HNG
HRVAHNG HNG	3 813 HRV	HRV	HRV	HRV	HRV	HRV	HRV	HING	HNG	HING	HNG	HNG
HRV/SVN	HHV	HRV	HRV	HRV	SVN	SVN	SWN	SVN	HRV	HRV	HRV	HRV
HNG/SAK	HNG	HNG	SVK	SVK	SVK	SVK	SVK	SVK	HNG	HNG	HNG	HNG
HNG/SVN	HNG	HNG	SVN	SVN	SVN	SVN	SVN	SVN	HNG	HNG	HNG	HNG

# Propagation criteria

The curves attached to this Annex should be used to determine the interfering field strength. Administrations may agree on other curves.

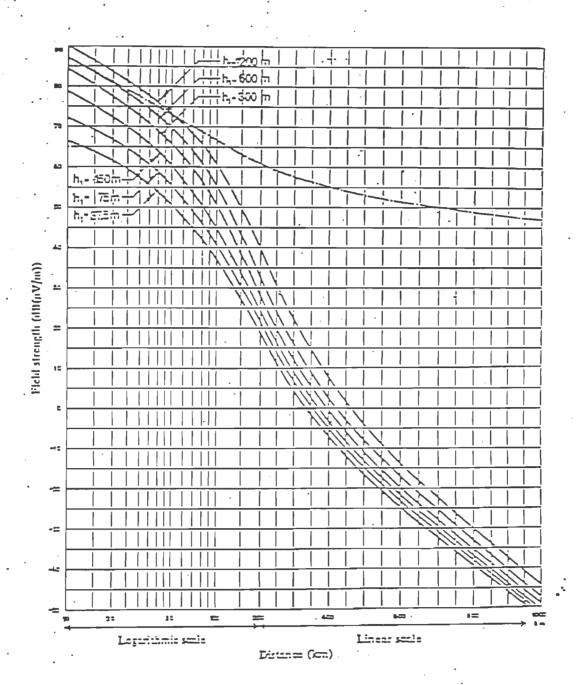
#### Correction factors

A general correction factor of -9 dB is used in the 1800 MHz band

Correction factor for receiving antenna from 10 m to 3 m:

Distance < 50 km: -10 dB Distance > 100 km: -3 dB

Linear interpolation is used for intermediate distances. For sea path propagation the correction factor for receiving antenna from 10 m to 3 m is -10 dB.


# Effective antenna height

The effective antenna height shall be evaluated according to the relevant procedure laid down in the "Vienna Agreement, 1993".

Page 2

# PROPAGATION CURVES FOR FREQUENCIES ABOVE 400 MHz

	=	=	:			-		. 5		31	•		• 38		2	. 1	•		•		2		2		÷	•	•	р
	1	T	Π		Ī	T	Ť	Ī	i	1				i				Ī ·	1	1			Ī	İ	Ī	.	Π	2
	Ť	$\overline{}$		•	-	·	<u> </u>	<del>.</del>	Ī		i		<del>i</del>	<u> </u>	<del>i</del>		İ	<del>Ì</del>	İ	1		:	Ť	i	İ	<u> </u>	i	
	Ť	Ť	1	OVE		-				-	:		<del>i</del>	!	<del>-</del>		<del> </del>	†	<del>.</del> -	: 	i		†	<u>'</u>	<del>i </del>	$\dot{\Box}$	<del>                                     </del>	
r	Ť	$\dot{-}$	-	curves uor noquencies above			1	Holyht of receiver antenna; 10 m	-			_	<del>!                                    </del>	<del>.</del>			<u> </u>	:	<del>.</del>	;	i		÷	÷	<del> </del>	<del> </del>		
$\vdash$		<del></del>	1	103				07'	ŀ	<del> </del>			<u> </u>	1	   •	_	<u> </u>	1	1	<u>.</u>	<del>'</del>	-	╁	<del>¦                                    </del>	<del> </del>		<u>                                     </u>	2
$\vdash$	<del></del>	+		ופונ	10.			i _	-	_	<u> </u>	_	1	<u> </u>	<u> </u> 	•	Ī	<u>  ·                                     </u>	<del>!</del>	<del> </del>	⊹	<u>'l</u>	┼	<del> </del>			<del></del>	
$\vdash$	+	<del> </del>			10% of time — 50% of locations		3	=======================================	·}		!		1	<u> </u>	· 		<u>!</u>	<del> </del>	┼	<u> </u>	┼	┼	+	<del>  •</del>	<u> </u>		H	
-	+	<u> </u>	,	-	ncu			ina;	ŀ		_		<u>                                     </u>	<u>                                     </u>	1		<u>                                     </u>	<del>! -</del>	!	<del>!</del>	<u> </u>	<u>!</u>	<del>  •</del>	<u>                                     </u>	<del>                                     </del>	<del>-</del> -	<u> </u>	
$\vdash$	<del> </del>	+	= = = = = = = = = = = = = = = = = = =	-	70		. We	i i	-	_	_		<u> </u>	<u>                                     </u>	<u> </u>		_	<u>                                     </u>	<u> </u>	1	<del> </del>	<u> </u>	<u>                                      </u>	1	_	<u> </u>	1 1	Ę.
H	<u> </u>	<del> </del> -			10%	Ξ.		9 10	-	ᆜ	_ !		<u> </u>	<u> </u>			<u> </u>	느	<u> </u>	는	<u> </u>	<u>;                                    </u>	<u>                                     </u>	<u> </u>	<u> </u>	<u> </u>	1/	
L	_	<u> </u>	;	5 	Ī	Earth: Ah ~ 50 m	Effective radiated power: 1 kW	נטלא	-	_	<u>.  </u>		<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u>  .                                   </u>	<u> </u>	<u> </u>	<u> </u>	1	<u>!                                    </u>	<u> </u>		/ /	
Ŀ	<u> </u>	<u> </u>	إِ إ	~	fm	=	<u> </u>	= =			-		<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	_	<u> </u>	<u></u>	1.	<u> </u>	<u> </u>		1/1	
L				400 MIR.	-	۲: _۲	֡֝֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	E	Ļ				<u> </u>					<u> </u>		<u> </u>	<u> </u>	<u> </u> .	<u> </u>	<u> </u>	<u> </u>	1/	1.// 1.//	£
L		<u> </u>	] [	Ş	10,%	Earl	1212	Ī	L				<u> </u>	<u> </u>				<u> </u>		<u> </u>	1_	<u> </u>	<u> </u>	<u> </u>	1	! /	1//	
L	<u> </u>	<u> </u>											<u> </u>					<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	11	1	<u>i//  </u>	
			<u> </u>		ļ		1	_			1		<u> </u>									<u> </u>	<u> </u>	<u>l</u> .	Y /	1//	7	
																Ì			1					1	11	y/ii		- 2
Г						Τ.	.		ĺ	$\neg$	. [					$\neg$			1		-	!	Ī	<del>y</del> /	1//	4		=
Г	i						T	$\overline{\parallel}$	i	$\overline{}$	i					.			1			H	1/	1//	<i>!///</i>	Ì	$\overline{ }$	
Г					<u> -</u>	1	T	$\overline{}$	·	$\overline{}$													V.,	1.//	#		$\overline{ }$	
	T					Ī	$\top$		1	$\overline{}$	1				i					!		: /	1/	YIH	1		$\overline{\square}$	-
	1:				Ì	İ.	Ť	Ť	Ť	寸	Ť		<u> </u>			i	,	İ	i	1	[	7	<del>Y</del> /	1//		<u> </u>		5
r	:	i	İ		İ	Ï	Ť	Ť	Ť	ij	:							İ		!	<u> </u>	:/	y //	7 .	1 1		i	
	<u>;</u>	i	Ī		<u> </u>	i	Ť	Ť	Ť	寸	- :					i		<u>-</u>	<u>-</u>	<u>.                                    </u>	V	11	<u>Y//</u>	<del>i                                     </del>	i		Ш	
	_ <u></u>	Ť	1		İ	†	†	Ť	<del>-</del> †	寸	<del>. i</del>				·	<del>-i</del>		<del></del>	<u>'</u>	<del> </del>	1/	1//	<del>///</del>	<u> </u>		<u>.                                    </u>	<del>i i</del>	
r	Ť	<del>-</del>	i		<del>i</del>	<del>i</del>	1	Ť	:	寸	Ť	•			<u>'</u>	<u></u> ;		i	<u>'                                      </u>	<u>'/</u>	<del>'</del> //	111	Î	<del>j</del>	<u> </u>		<u> </u>	<u>3</u>
$\vdash$	<del>-</del> -	<del></del>	<del>-                                    </del>		<u>                                     </u>	÷	†	Ť	Ť	÷	= =		==		<del>-i</del>	<del></del>		<del> </del>	/	<u> </u>	<u>///</u>	4/	<del>†</del>		<del> </del>	<u>'                                     </u>	H	
$\vdash$	- <del> </del> -	<del>-</del>	<del>-                                    </del>		<u> </u>	÷	÷	÷	÷	<u> </u>		5	75m 375m		<u> </u>			<u> </u>	<u>'</u>	7/	<u>///</u>	!	<del>1</del>	<u> </u> 		<u> </u> 	一	
$\vdash$		<del> </del>	<u> </u>		<u>                                       </u>	╁	$^{+}$	$^{+}$	÷	— <u> </u>	111	111	1.1		_	<del></del> ¦		<u>  /</u>	· /	VI	<u> </u>	<del>                                     </del>	<del>!    </del>	<u>                                     </u>	<u> </u>	<u>                                      </u>	$\vdash$	
$\vdash$	÷	1 1			<u>                                     </u>	<u>                                     </u>	+	· <u> </u>	<del>-</del>	<del>-</del>	<del>     </del>	<u> </u>	-		.			/	: /	<u> </u>	<del>/</del>	<u> </u> 	1 .	<u>                                     </u>		<u> </u> 	<u>                                     </u>	Š
$\vdash$	+	1	1	_	<u> </u>   •	1/	$^{+}$	+	<del>-1</del>	$\dashv$	7	$\frac{1}{2}$	/		<del>_ ;</del>	<u>·  </u>	/	<u>  /                                   </u>	1 <i>//</i>	V/_ V	<u>                                     </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>'</u>	<del>                                     </del>	
H	·	1 1	1	Ę.	<u> </u>	<u>  j  </u>	1	$\frac{\perp}{1}$	<u>!</u>	ᆜ,	<u>.</u>		$\overline{}$			<u> </u>	/	<u> </u>	///	<u>{</u> i	- 	1	<del> </del>	<u>1</u>	<u>                                       </u>	·		
$\vdash$	+	<u> </u>	-1	-Spi	<u> </u>	 	$^{+}$	+		_ ;	8 J. S.	- 1			\ <u>`</u>	$ \bigcirc $	/	7/	<u>//_</u>	<u>                                     </u>	<u>                                     </u>	<u> </u>	<del> </del>	! i	<u> </u>	' 	<u>1  </u>	
F	- <del> -</del> -			Fran-spaca	ļ-,	<u> </u> -		+	-÷	<u>.  }</u>	(J.ol. Earth's padlys.	_		7	X	$\ddot{\lambda}$	**	1/1		<del> </del>	<u> </u>	1	<del>-</del> -	<del>-</del>	<u>  ·</u> -	<u>L</u> .		١
-	!	1 1	<del> </del>	. 、	1	 	1	1	i L	[ <u>§</u>	<u> </u>				إحر	X	<b>7</b> 7	T K	<u> </u>	<u>                                     </u>	<u> </u> 	<del> </del>	1	<u>                                     </u>	<u>1</u>	<u>                                      </u>	1 !	
	<u> </u>			]	7	<u> </u>	1	+	·  -	ᆤ	₹ \$		3/	/		/)	///	<u>(                                    </u>	I E E	<u> </u>	<u> </u> 	<del>_</del>	<del> </del>	1	<u> </u>	! 	<u>                                     </u>	-
Ŀ	!	1 1	_		j	<u> </u>	+	 , I	<u>i</u>	ᆜ	المرا		/			// <u>)</u>	<u>//</u>	<u>                                       </u>	E E	1	<u> </u>	<u> </u>	1	<u>  ·  </u>	1 .	<u>                                     </u>	<u> </u>	ř
L		1 1	_ļ	_/		<u> </u>	<u> </u>	<u>. </u>	لجر	1	اِ	7			//	<u>//</u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>.                                    </u>	<u> </u>	ᅸ.	ŀ.
F	1	1 1	•	7 (		<u>.</u>	<del> </del>	7		<del>-</del>	1	7	/	Z,	//			ı	1	1	1	1	1	1	1	1	Distance (1m)	
L	1	1 1	.4				T	رار	1	بزر	1	<b>8</b> 1	Ź,	7	//			1	1		1	ī		1		1	Ţ.	
_	1	1 1	<u>।।</u> ४४	_			7	- V	مز ا	<del>-</del>	4		/	//	_	_		<u> </u> 	<u> </u> 	<u> </u> 	<u>}                                    </u>	+	<u> </u>	<u>!</u> _	1	<del>  -</del>	12	=
-	1	1 l	7		/	<u> </u>	<del> </del>	4	+	$\frac{1}{2}$	<u>/</u> y	-4	/	//	<u>¦</u>			<u>'                                     </u>	<u> </u>	<del> </del>	$\frac{1}{1}$	╁	+	<del> </del>	1	╁	<del>i </del>	<u>:</u>
Ŀ	1	1/7				/	1	4	1/	-	<u> </u>	,21	/			¦		<u> </u> 	<u> </u>	1	<u> </u>	+-	╀	<u> </u>	<u> </u>	<u> </u>	┼	<u> </u> =
		الرحمل		K			1	1	<u> </u>		Λ	j								1				i	-			
-	:/	<u>/ /  </u>	$\nearrow$	<u>'</u>	/	·   /	丫	1	<u>/</u>	X	7	1		-	_	<u>-</u>		<u>.                                      </u>	Ī	<del>i</del>	<del>՝</del>	<del>i</del>	<del>i</del>	†	<del>i</del>	1	Π	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֟
ĺ	1/			/				1	/	1	1				1													
	1/	ر کم		1	′ ,	/	1	رام	1	-	1	1			٠//	rt t	01 U	0112	חופ!	: 2=	) 4:	5ua	us b	٠ اعتادا				, •
	<_	=		- 1		-	_	2		9		2	_			=			6		9		2		۶.		=	1



Field strength (dB ( $\mu$ V/m)) for 1 kW e.r.p. Frequency: 450 to 1000 MHz (Bands IV and V) – Cold sen – 10% of the time – 50% of the locations –  $h_2$  = 10 m

#### Annex 3

#### 1. Simplified algorithm for frequency co-ordination

#### 1.1 Notation

P = e.i.r.p of wanted transmitter in direction of receiver (dBm)

L = Isotropic path loss from wanted transmitter to receiver (dB)

P_i = e.i.r.p of interiering transmitter i in direction of receiver (dBm)

L_i = Isotropic path loss from interfering transmitter i to receiver (dB)

α = Receiver antenna gain towards wanted transmitter (dBi)

α; = Receiver antenna gain towards interfering transmitter i (dBi)

β_i = Gain due to receiver filter selectivity on interference from transmitter i (dB)

y = Estimated shadowing margin to be allowed on C/I value (dB)

C = Total wanted carrier power at receiver input (dBm)

 I_i = Effective interiering power due to transmitter i at receiver input (allowing for the effect of receiver filtering) (dBm)

1 = Total effective interfering power at receiver input (allowing for shadowing margin) (dBm)

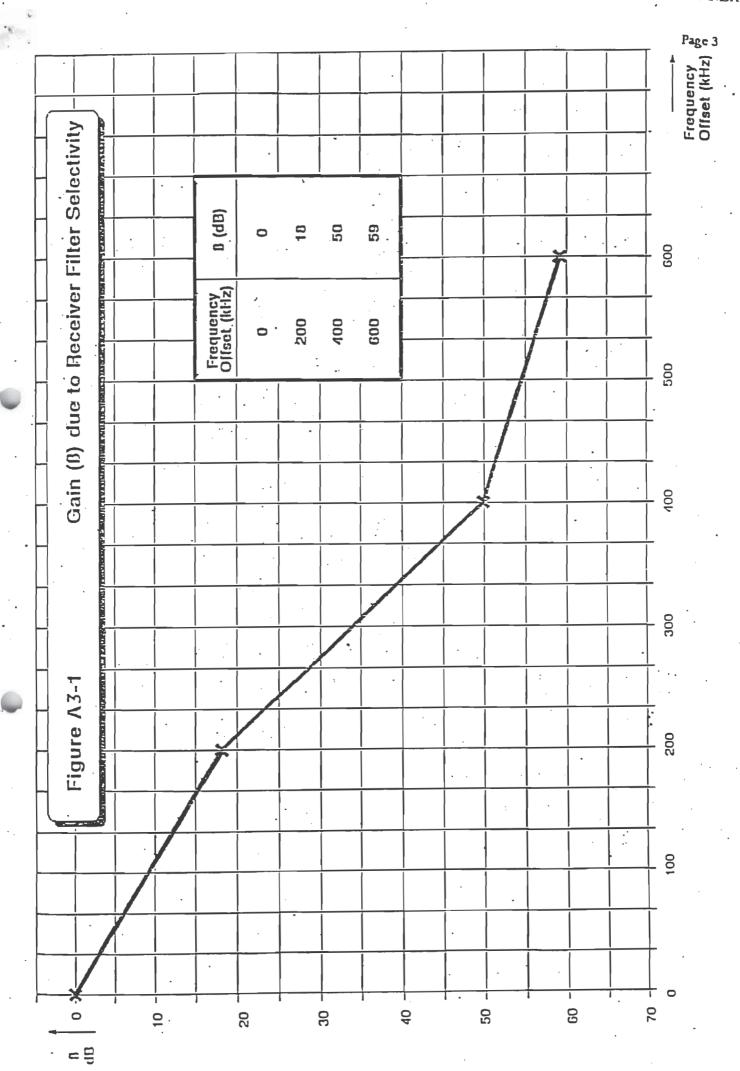
 $\lambda = C/I$  threshold value

#### 1.2. Base-mobile Path Algorithm

- (a) For each cell in question, take one or more "worst case" mobile station MS locations. These are locations at which the C/I is known, or believed to be, lowest.
- (b) Calculate the wanted carrier power at the receiver input:  $C = P L + \alpha$
- (c) Calculate the effective interfering power due to each potentially interfering transmitter (whether co-channel or adjacent channel) at the receiver input (allowing for the effect of receiver filtering):
   I_i = P_i L_i + α_i + β_i
- (d) Sum the interfering powers at the receiver and allow for the shadowing margin:  $I = 10 \log_{10} \Sigma 10^{(1/10)} + \gamma$
- (e) Check the effective C/I ratio (C-I) against the threshold value 2.

## 1.3. Mobile-base Path Algorithm

(a) Take each cell that has a potentially interfering mobile station (MS). If N is the number of carrier frequencies allocated to that cell that can cause potential interference to the base station (BS), assume there are N MS's, one radiating each carrier, in that cell.


A proportion of the total number of MS's so identified (e.g. 20%) should be assumed to be at the worst case locations of their cells and the rest at the mid-point of their cells.

Alternatively a "Monte Carlo" simulation can be undertaken in which a number of "snapshots" of the interference scenario are taken. In each snapshot, the interfering MS's are placed at random locations (uniformly distributed) within their cells. To find for example the 90% C/I value, 100 snapshots could be taken, and the C/I which is exceeded by 90 of the snapshots used.

- (b) Perform steps (b) to (e) of the base-mobile path algorithm.
- 1.4. Notes on Calculation of Parameters
- (a) P, P_i These should be supplied by the public land mobile network (PLMN) operators. For DCS-1800 transmitters, each P, P_i, is the power in the active part of the time slot
- (b) L, L_i These can either be calculated using appropriate terrain modelling, or some simplified power distance law, e.g. d^{-3.3}.
- (c)  $\alpha$ ,  $\alpha$ ; These should be supplied by the PLMN operators.
- (d) β_i These can be read off Figure A3-1
- (e) If shadowing effects have been allowed for in the calculation of L and L_i, γ can be set to 0. Otherwise a value of 7 dB could be used (this assumes the wanted and unwanted signals each have a 5 dB shadowing margin (log-normal distribution) and the composite shadowing margin is 1,41 x 5 dB, i.e. 7 dB).
- (f) 2 can be taken as follows:

DCS receiver: = 9 dB

Note: The calculation must take into account all interfering transmitters from the wanted PLMN as well those from the neighbouring PLMN's.



Annex 4

Page 1

Technical parameters of the DCS-1800 system

C/I ratios

The C/I ratio is the ratio between signal power to interfering signal power at the receiver input during the active part of the DCS-1800 timeslot including multiple interferers.

The following C/I ratios apply:

Wanted	Interferer	C	o-channel	. 2	00 kHz	•	400 kHz	 600 kHz
DCS-1800 (1)	DCS-1800	. 8	₫B	- !	9 dB		- 41 dB	 - 49 dB

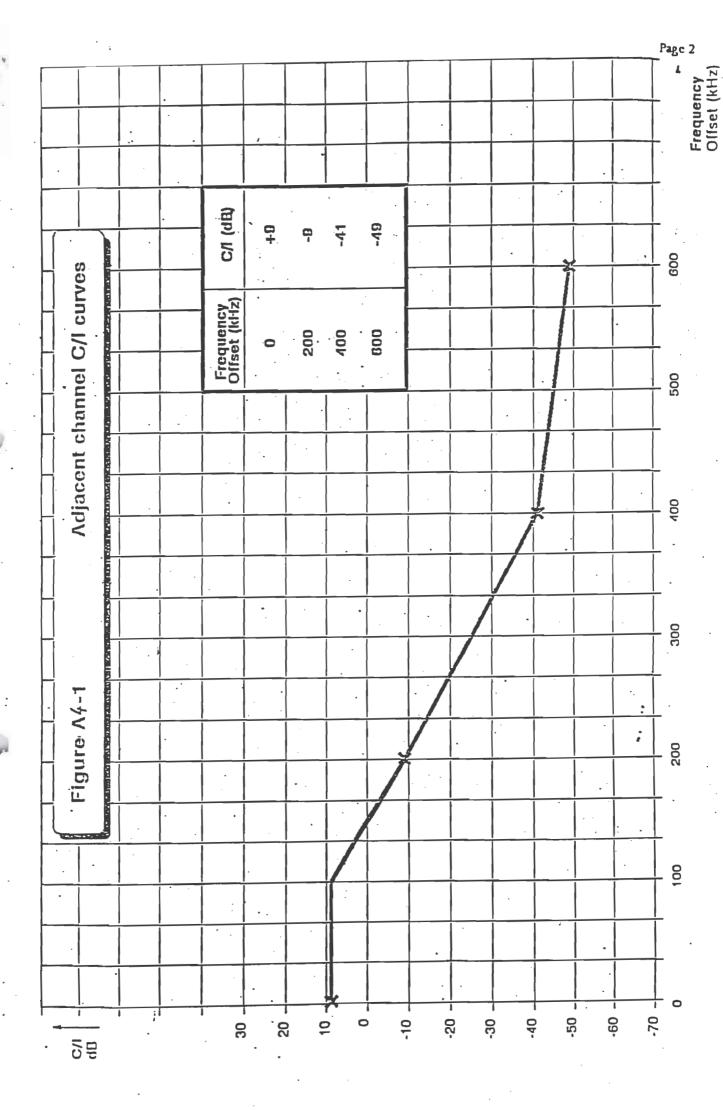
A curve indicating C/I values for intermediate values of frequency offset are attached to this Annex.

Notes:

(Figure A4-1)

Minimum field strength to be protected ( $\dot{E}_{min}$ ):

(50% of location - 50% of time) .


DCS-1800 MS

42 dByV/m (1)

DCS-1800 BS

38 dBpV/m (1)

(1) Values from GSM recommendation 05-05 (Version 4.3.0)



## **Anhang F.13**

zu den Nutzungsbedingungen im Verfahren betreffend Frequenzzuteilungen in den Frequenzbereichen 800 MHz, 900 MHz und 1800 MHz:

Vorzugsfrequenzabkommen 1800 MHz 2

# Agreement

between the telecommunications administrations of Austria, the Czech Republic, Poland, the Slovak Republic and Germany

on the frequency coordination of systems using DCS 1800 standards in the frequency bands 1710 - 1785 MHz and 1805 - 1880 MHz

#### 1. Introduction

The telecommunications administrations of Austria, the Czech Republic, Poland, the Slovak Republic and Germany concluded this agreement for the purpose of the frequency coordination of systems using the DCS 1800 standards.

#### 2. Principles Background

The administrations mentioned above deemed it necessary to conclude an agreement on the division of preferential frequencies for DCS 1800 systems in conformity with the CEPT Recommendation T/R 22-07.

Such a division of preferential frequencies could form a common basis for complementary bilateral coordination agreements in which the compatibility with the fixed service should be taken into account.

When DCS 1800 systems are operated in neighbouring countries, the Vienna Agreement of 1993 shall be applied for the coordination procedure in the frequency bands 1710 - 1785 MHz and 1805 - 1880 MHz.

In order to enable each administration to decide on its own in which subbands DCS 1800 may be introduced and to decide on the number of operators the entire band was taken into account.

The entire band is divided into a number of subbands in which equal access to the spectrum is ensured for each administration. This enables each administration, if appropriate, to provide for equal coordination conditions for each DCS 1800 operator.

- 3. Coordination between DCS 1800 systems and technical provisions
- 3.1 The division into preferential frequencies can be found in Annex 1.
- 3.2 Preferential frequencies may produce a field strength not exceeding 25 dBµV/m at 3 m above ground at a distance of 15 km in the neighbouring country.
- 3.3 Non-preferential frequencies may produce a field strength not exceeding 25 dBµV/m at 3 m above ground at the border to the neighbouring country.
- 3.4 The coordination procedures laid down in the Vienna Agreement, 1993, shall be applied.
- Propagation criteria for the calculation of the interfering field strength are described in Annex 2.
- 3.6 For adding multiple interferers, the simplified algorithm described in <u>Annex 3</u> shall be applied.
- 3.7 The technical parameters described in Annex 4 shall be used.

## 4. Coordination between DCS 1800 systems and fixed services:

The coordination of frequencies between DCS 1800 systems and fixed services shall be based on complementary bilateral agreements covering the entire frequency bands 1710 - 1785 MHz and 1805 - 1880 MHz. These bilateral agreements should take into account the allotment of preferential frequencies laid down in this agreement as far as possible.

## 5. Date of entry into force

This agreement will enter into force on a bilateral or trilateral basis concerning those parts of the frequency bands 1710 - 1785 MHz and 1805 - 1880 MHz for which all the involved administrations have informed each other of their intention to put DCS 1800 systems into operation.

As an exception, if a coordination with the fixed services is required by at least one of the involved administrations, the date of entry into force of this agreement will be subject to signing the complementary agreement.

For the administration of Austria:

For the administration of the Czech Republic:

For the administration of Poland:

For the administration of the Slovak Republic:

For the administration of Germany:

Thomas Kentinami

The original text of this agreement written in English language is retained by the German Administration.

Annex 1	Page 1
Preferential division of the frequency band	ency band
01.10.95	18_PRE25 DOC

channel number         512-518         519-524         525-530         531-536         537-543         540-549         550-555         56-561         56-561         56-564         56-574         575-580         581-586           no of channels         7         6         6         7         6         6         7         6         6         6         7         6         6         7         6         6         7         6         6         7         6         6         7         6         6         6         7         6         6         7         6         6         6         7         6         6         6         7         6         6         7         6         6         6         7         6         6         7         6         6         7         6         6         6         7         6         6         6         7         6         6         6         7         6         6         7         6         6         7         6         6         7         6         6         6         7         6         6         7         6         7         6         7         6         7         6 <th>frequency band</th> <th></th> <th></th> <th></th> <th></th> <th>1710 (</th> <th>1805) - 1</th> <th>1710 (1805) - 1725 (1820) MHz</th> <th>o) MHz</th> <th></th> <th></th> <th></th> <th></th>	frequency band					1710 (	1805) - 1	1710 (1805) - 1725 (1820) MHz	o) MHz				
AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT <th>channel number</th> <th>512 - 518</th> <th>519 - 524</th> <th>525 - 530</th> <th>531 - 536</th> <th>537 - 543</th> <th>544 - 549</th> <th>550 - 555</th> <th>556 - 561</th> <th>562 - 568</th> <th>569 - 574</th> <th>575 - 580</th> <th>1 ' 1</th>	channel number	512 - 518	519 - 524	525 - 530	531 - 536	537 - 543	544 - 549	550 - 555	556 - 561	562 - 568	569 - 574	575 - 580	1 ' 1
AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT <th></th> <th></th> <th></th> <th></th> <th>.  </th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>					.								
AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT <th>no of channels</th> <th>7</th> <th>9</th> <th>9</th> <th>9</th> <th>7</th> <th>9</th> <th>9</th> <th>9</th> <th>7</th> <th>9</th> <th>9</th> <th>9</th>	no of channels	7	9	9	9	7	9	9	9	7	9	9	9
AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>													
AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT         AUT <td>AUT/D/CZE</td> <td>AUT</td> <td>AUT</td> <td>AUT</td> <td>a</td> <td>Q</td> <td>Q</td> <td>D 556</td> <td>CZE</td> <td>CZE</td> <td>CZE</td> <td>CZE</td> <td>CZE</td>	AUT/D/CZE	AUT	AUT	AUT	a	Q	Q	D 556	CZE	CZE	CZE	CZE	CZE
CZE         CZE         CZE         D         D         D         D         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE	AUT/CZE	AUT	AUT	AUT	AUT	AUT	AUT	CZE	CZE	CZE	CZE	CZE	CZE
POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL <td>D/CZE</td> <td>CZE</td> <td>CZE</td> <td>۵</td> <td>۵</td> <td>O</td> <td>Q</td> <td>۵</td> <td>D</td> <td>CZE</td> <td>CZE</td> <td>CZE</td> <td>CZE</td>	D/CZE	CZE	CZE	۵	۵	O	Q	۵	D	CZE	CZE	CZE	CZE
POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL         POL <td>D/CZE/POL</td> <td>POL</td> <td>POL</td> <td>POL</td> <td>POL</td> <td>O</td> <td>۵</td> <td>Q</td> <td>D</td> <td>CZE</td> <td>CZE</td> <td>CZE</td> <td>CZE</td>	D/CZE/POL	POL	POL	POL	POL	O	۵	Q	D	CZE	CZE	CZE	CZE
POL         POL         POL         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D </td <td>CZE/POL</td> <td>POL</td> <td>POL</td> <td>POL</td> <td>POL</td> <td>POL</td> <td>POL</td> <td>CZE</td> <td>CZE</td> <td>CZE</td> <td>CZE</td> <td>CZE</td> <td>CZE</td>	CZE/POL	POL	POL	POL	POL	POL	POL	CZE	CZE	CZE	CZE	CZE	CZE
AUT         AUT         AUT         SVK         SVK         SVK         SVK         SVK         SVK         SVK         SVK         AUT           AUT         AUT         AUT         AUT         SVK         SVK         SVK         SVK         SVK         SVK         AUT           POL         POL         POL         POL         SVK         SVK         SVK         SVK         CZE         CZE         CZE         CZE           POL         POL         POL         POL         SVK         SVK         SVK         SVK         SVK         POL         POL	D/POL	POL	POL	POL	POL	Q	O	D	D	Q	0	POL	POL
AUT         AUT         AUT         AUT         SVK         SVK         SVK         SVK         SVK         SVK         AUT         AUT         AUT         AUT         AUT         AUT         AUT         SVK         SVK         SVK         SVK         AUG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE <td>AUT/CZE/SVK</td> <td>AUT</td> <td>AUT</td> <td>AUT</td> <td>SVK</td> <td>SVK</td> <td>SVK</td> <td>SVK 556</td> <td>CZE</td> <td>CZE</td> <td>CZE</td> <td>CZE</td> <td>CZE</td>	AUT/CZE/SVK	AUT	AUT	AUT	SVK	SVK	SVK	SVK 556	CZE	CZE	CZE	CZE	CZE
AUT         AUT         AUT         SVK         SVK         SVK         SVK         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG         HNG <td>AUT/SVK</td> <td>AUT</td> <td>AUT</td> <td>AUT</td> <td>AUT</td> <td>SVK</td> <td>SVK</td> <td>SVK</td> <td>SVK</td> <td>SVK</td> <td>SVK</td> <td>AUT</td> <td>AUT</td>	AUT/SVK	AUT	AUT	AUT	AUT	SVK	SVK	SVK	SVK	SVK	SVK	AUT	AUT
POL         POL         POL         SVK         SVK         SVK         SVK         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE         CZE <td>AUT/SVK/HNG</td> <td>AUT</td> <td>AUT</td> <td>AUT</td> <td>SVK</td> <td>SVK</td> <td>SVK</td> <td>SVK 556</td> <td></td> <td>HNG</td> <td>HNG</td> <td>HNG</td> <td>HNG</td>	AUT/SVK/HNG	AUT	AUT	AUT	SVK	SVK	SVK	SVK 556		HNG	HNG	HNG	HNG
CZE CZE SVK SVK SVK SVK SVK CZE CZE CZE POL POL POL SVK SVK SVK SVK SVK POL	CZE/POL/SVK	POL	POL	POL	POL	SVK	SVK	SVK	SVK	CZE	CZE	CZE	CZE
POL POL POL SVK SVK SVK SVK SVK SVK POL	CZE/SVK	CZE	CZE	SVK	SVK	SVK	SVK	SVK	SVK	CZE	CZE	CZE	CZE
	POL/SVK	POL	POL	POL	POL	SVK	SVK	SVK	SVK	SVK	SVK	POL	POL

The numbering of the channels is defined in Recommendation GSM 05.05 (Version 4.5.0). Channel number n corresponds to a carrier frequency FI(n) in the lower band and to a carrier frequency Fu(n) in the upper band, defined by the following equations (frequencies are in MHz):

FI (n) = 
$$1710,2+0,2*(n-512)$$
  
Fu (n) = FI(n) + 95

Annex 1												Page 2
			Pref	eferentia 1710 - 178	I divisi 35 / 1805	Preferential division of the frequency band 1710 - 1785 / 1805 - 1880 MHz for DCS 1800	he frequants	uency t	o 0			
01.10.95											18	18_PRE25 DOC
•												
frequency band					1725 (1	1725 (1820) - 1740 (1835) MHz	740 (183	5) MHz				,
channel number	587 - 593	594 - 599	600 - 605	606 - 611	612 - 618	619 - 624	625 - 630	631 - 636	637 - 643	644 - 649	650 - 655	656 - 661
no of channels	7	9	9	9	7	9	9	9	7	9	9	9
AUT/D/CZE	CZE	AUT	AUT	AUT 6	615	616 D	Q	CZE	CZE	CZE	CZE	CZE
AUT/CZE	CZE	AUT	AUT	1	AUT	618 CZE	CZE	CZE	CZE	CZE	CZE	CZE
D/CZE	CZE	CZE	D	O	O	О	Ω	۵	CZE	CZE	CZE	CZE
D/CZE/POL	POL	POL	POL	POL	O	۵	a	D	CZE	CZE	CZE	CZE
CZE/POL	POL	POL	POL	POL	POL	POL	CZE	CZE	CZE	CZE	CZE	CZE
D/POL	POL	POL ·	POL		۵		O	۵	۵	۵	POL	POL
AUT/CZE/SVK	CZE	AUT	AUT	1		616 SVK	SVK	CZE	CZE	CZE	CZE	CZE
AUT/SVK	AUT	AUT	AUT	- 1	SVK	- 1	SVK	SVK	SVK	SVK	SVK	SVK
AUT/SVK/HNG	HNG	AUT	AUT		- 1	616 SVK	SVK	HNG	HNG	HNG	HNG	HNG
CZE/SVK	CZE	CZE	599 SVK	SVK	SVK	SVK	SVK	SVK	CZE	CZE	CZE	CZE
POUSVK	POL	POL	POL	POL	SVK	SVK	SVK	SVK	SVK	SVK	649 POL	POL
					·							
										-		
												٠,

1 f

Annex 1												Page 3
			Pre	Preferentia 1710 - 178	II divisi 15 / 1805	on of tl - 1880 N	ne frequ AHz for [	ntial division of the frequency band 1785 / 1805 - 1880 MHz for DCS 1800	oand o		;	
01.10.95											-	18 PREZS.DOC
				-								
frequency band					1740 (1	1740 (1835) - 1755 (1850) MHz	55 (1850	) MHz		ť		
channel number	662 - 668	669 - 674	675 - 680	681 - 686	687 - 693	694 - 699	700 - 705	706 - 711	712 - 718	719 - 724	725 - 730	731 - 736
no of channels	7	9	9	9	7	9	9	9	7	9	9	9
									750	7.0	100	1
AUT/D/CZE	AUI	AUI	AOI						CZE	CZE	128	/29 AUI
AUT/CZE	AUT	AUT	AUT	AUT	AUT	AUT	CZE	CZE	CZE	CZE	CZE	CZE
D/CZE	CZE	CZE	۵	۵	۵	۵	۵	۵	CZE	CZE	CZE	CZE
D/CZE/POL	POL	POL	POL	POL	۵	۵	۵	۵	CZE	CZE	CZE	CZE
CZE/POL	POL	POL	POL	POL	POL	POL	CZE	CZE	CZE	CZE	CZE	CZE
D/POL	POL	POL	POL	POL	۵	۵,	۵	D	۵	۵	POŁ	POL
AUT/CZE/SVK	AUT	AUT	AUT	SVK	SVK	SVK	SVK	SVK	CZE	CZE	728	729 AUT
- AUT/SVK	AUT	AUT	AUT	AUT	SVK	SVK	SVK	SVK	SVK	SVK	AUT	AUT
AUT/SVK/HNG	AUT	AUT	AUT	SVK	SVK	SVK	SVK	SVK	HNG	HNG	728	729 AUT
CZE/POL/SVK	POL	POL	POL	POL	SVK	SVK	SVK	SVK	CZE	CZE	CZE	CZE
CZE/SVK	CZE	CZE	SVK	SVK	SVK	SVK	SVK	SVK	CZE	CZE	CZE	CZE
POL/SVK	POL	POL	POL	POL	SVK	SVK	SVK	SVK	SVK	SVK	POL	POL

Annex 1	Page 4
Preferential division of the frequency band	,
1710 - 1785 / 1805 - 1880 MHz for DCS 1800	
01.10.95	18_PRE25 DOC

	=		AUT						i-		Ŀ			
	806 - 811	9	805 AL	CZE	CZE	CZE	CZE	POL	805 AUT	AUT	805 AUT	CZE	CZE	POL
	800 - 805	9	,	CZE	CZE	CZE	CZE	POL	CZE	AUT	HNG	CZE	CZE .	799 POL
	794 - 799	9	CZE	· CZE	CZE	CZE	CZE	۵	CZE	SVK	HNG	CZE	CZE	SVK
	787 - 793	7	CZE	CZE	CZE	CZE	CZE	a	CZE	SVK	HNG	CZE	CZE	SVK
) MHz	781 - 786	8	O	CZE	۵	0	CZE	۵	SVK	SVK	SVK	SVK	SVK	SVK
1755 (1850) - 1770 (1865) MHz	775 - 780	9	٥	AUT	۵	O	CZE	D	SVK	SVK	SVK	SVK	SVK	SVK
350) - 17	769 - 774	9	a	AUT	0	0	POL	D	SVK	SVK	SVK	SVK	SVK	SVK
1755 (18	762 - 768	7	٥	AUT	Q	0	POL	D	SVK	SVK	SVK	SVK	SVK	SVK
	756 - 761	9	Q	AUT	۵	POL	POL	POL	SVK	. AUT	SVK	POL	SVK	POL
	750 - 755	9	. 0	AUT	۵	POL	POL	POL	SVK		SVK	POL	749 SVK	POL
	744 - 749.	9	AUT 750	AUT	CZE	POL	POL	POL	AUT 750	AUT	AUT 750	POL	CZE	POL
	737 - 743	7	AUT	AUT	CZE	POL	POL	POL	AUT	AUT	AUT	POL	CZE	POL
frequency band	channel number	no of channels	AUT/D/CZE	AUT/CZE	D/CZE	DICZEIPOL	CZE/POL	D/POL	AUT/CZE/SVK	AUT/SVK	AUT/SVK/HNG	CZE/POL/SVK	CZE/SVK	POL/SVK

Annex 1	Page 5
Preferential division of the frequency band	
01.10.95	18_PRE25 DOC

1770 (1865) - 1785 (1880) MHz			_							_		Γ.			
1770 (1865) - 1785 (1880) MHz		880 - 885	9	CZE	CZE	CZE	CZE	CZE	POL	CZE	AUT	HNG	CZE	CZE	POL
1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785 (1880) MHz   1785		874 - 879	9	CZE	CZE	CZE	CZE	CZE	POL	CZE	AUT	HNG	CZE	CZE	POL
1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1865) - 1785 (1880) MHz   1770 (1880) - 1785 (1880) MHz   1770 (1880) - 1785 (1880) MHz   1770 (1880) - 1785 (1880) MHz   1770 (1880) MHz   1770 (1880		868 - 873	9	CZE	CZE	CZE	CZE	. CZE	۵	CZE	AUT	HNG	CZE	CZE	SVK
1770 (1865) - 1785 (1880   812 - 818   819 - 824   825 - 830   831 - 836   837 - 843   844 - 849   850 - 855   812 - 818   819 - 824   825 - 830   831 - 836   837 - 843   844 - 849   850 - 855   813 AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT   AUT		862 - 867	9	CZE	CZE	CZE	CZE	CZE	O	CZE	AUT	HNG	CZE	CZE	SVK
S12-818   819-824   825-830   831-836   8	o) MHz	856 - 861	9	۵	CZE	Q	0	CZE	O	SVK	SVK	SVK	SVK	SVK	SVK
S12-818   819-824   825-830   831-836   8	785 (1880	850 - 855	9	۵	AUT	a	O	CZE	O	SVK	SVK	SVK	SVK	SVK	SVK
S12-818   819-824   825-830   831-836   8	865) - 17	844 - 849	9		AUT	Q	D	POL	D	SVK	SVK	SVK	SVK	SVK	SVK
S12-818   819-824   825-830   831-836       7	1770 (1	837 - 843	7		AUT	Q	D	POL	۵	AUT 845	SVK	AUT 845	SVK	SVK	SVK
812 - 818   819 - 824		31 - 836	9	AUT	AUT	D	POL	POL	POL	AUT	AUT	AUT	POL	SVK	POL
812 - 818  7  7  AUT  CZE [813 AUT  POL  POL  POL  AUT  AUT  AUT  POL  POL  POL  POL  POL  POL  POL  PO		825 - 830	9	AUT	AUT	Q	POL	POL	POL	AUT	AUT	AUT	POL	SVK	POL
812 - 818  7  7  AUT  CZE [813 AUT  POL POL POL POL AUT AUT AUT POL POL POL POL POL POL POL POL POL POL		819 - 824	9	AUT	AUT	CZE	POL	POL	POL	AUT	AUT	AUT	POL	CZE	POL
Dand  ber  els  1CZE			7	AUT		CZE	POL	POL	POL	AUT	AUT	AUT	POL	CZE	POL
channel num no of channe no of channe DICZE AUTICZE AUTICZE DICZE/POL DIPOL AUTICZE/POL AUTISVK/HI CZE/POL/S CZE/POL/S CZE/POL/S	frequency band	channel number	no of channels	AUT/D/CZE	AUTICZE I CZE	D/CZE	DICZEIPOL	CZE/POL	D/POL	AUT/CZE/SVK	AUTISVK	AUT/SVK/HNG	CZE/POL/SVK	CZE/SVK	POL/SVK

## Propagation criteria

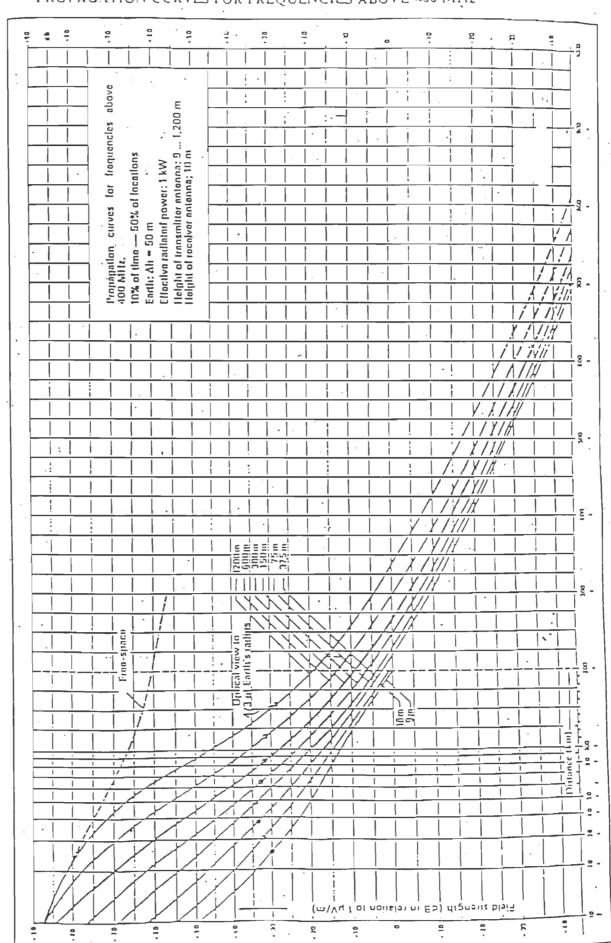
The curves attached to this Annex should be used to determine the interfering field strength. Administrations may agree on other curves, e.g. the latest version of CCIR Report 567.

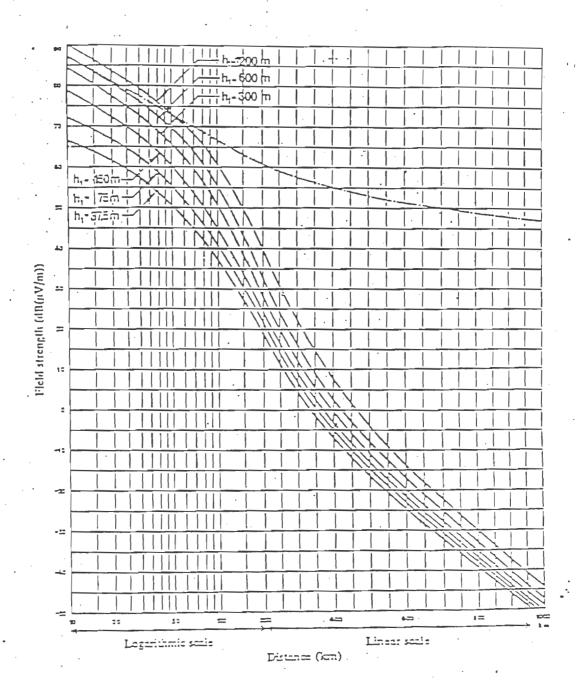
#### Correction factors

A general correction factor of -9 dB is used in the 1800 MHz band

Correction factor for receiving antenna from 10 m to 3 m:

Distance < 50 km: -10 dB Distance > 100 km: -3 dB


Linear interpolation is used for intermediate distances. For sea path propagation the correction factor for receiving antenna from 10 m to 3 m is -10 dB.


## Effective antenna height

The effective antenna height is the difference between the physical height of the antenna and the average height of the terrain. The average height of the terrain is the arithmetic mean of the terrain heights as measured at intervals of 1, 2, 3 ..., 14, 15 km in the direction being considered. If, beyond the 15 km limit, there are mountains which constitute major topographical obstacles, a distance of more than 15 km may be taken into account.

Page 2

## PROPAGATION CURVES FOR FREQUENCIES ABOVE 400 MHz





Field strength (dB ( $\mu$ V/m)) for 1 kW e.r.p. Frequency: 450 to 1000 MHz (Eands IV and V) – Cold sea – 10% of the time – 50% of the locations –  $h_1$  = 10 m

- · - Free space

#### Annex 3

## 1. Simplified algorithm for frequency co-ordination

#### 1.1 Notation

P = e.i.r.p of wanted transmitter in direction of receiver (dBm)

L = Isotropic path loss from wanted transmitter to receiver (dB)

P_i = e.i.r.p of interfering transmitter i in direction of receiver (dBm)

L_i = Isotropic path loss from interfering transmitter i to receiver (dB)

α = Receiver antenna gain towards wanted transmitter (dBi)

α_i = Receiver antenna gain towards interfering transmitter i (dBi)

β_i = Gain due to receiver filter selectivity on interference from transmitter i (dB)

 $\gamma$  = Estimated shadowing margin to be allowed on C/I value (dB)

C = Total wanted carrier power at receiver input (dBm)

l_i = Effective interfering power due to transmitter i at receiver input (allowing for the effect of receiver filtering) (dBm)

1 = Total effective interfering power at receiver input (allowing for shadowing margin) (dBm)

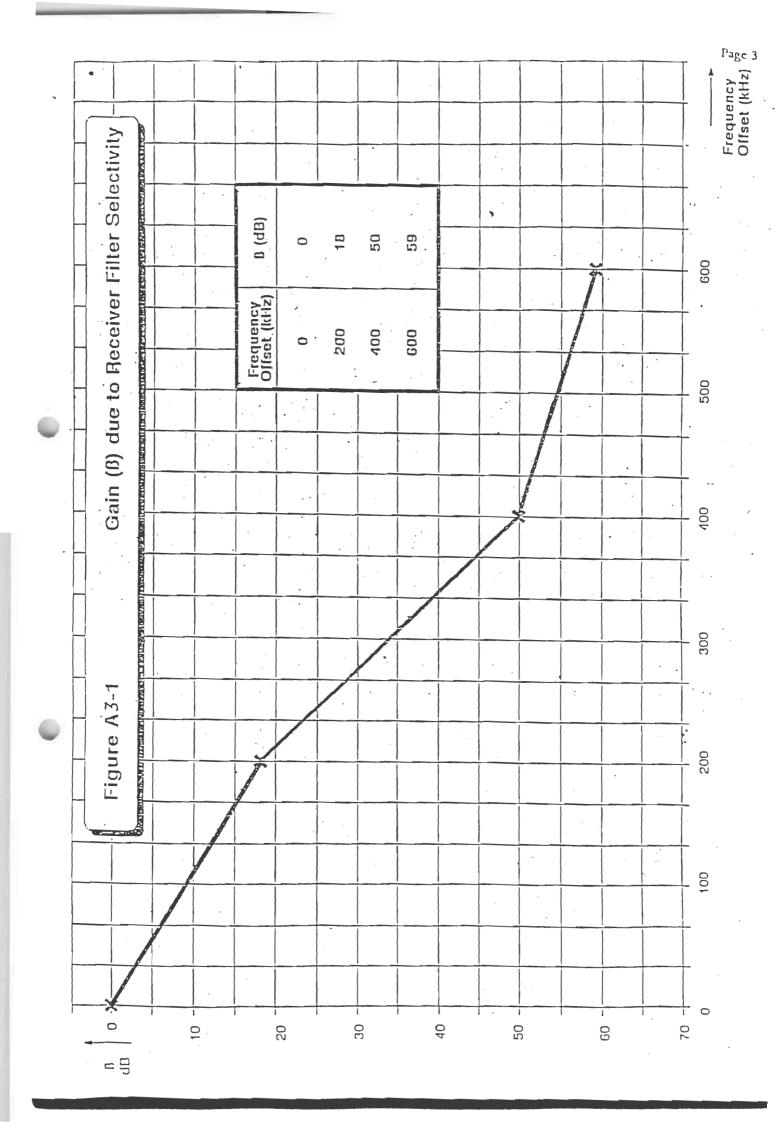
 $\lambda = C/I$  threshold value

#### 1.2. Base-mobile Path Algorithm

- (a) For each cell in question, take one or more "worst case" mobile station MS locations. These are locations at which the C/l is known, or believed to be, lowest.
- (b) Calculate the wanted carrier power at the receiver input:C = P L + α
- (c) Calculate the effective interfering power due to each potentially interfering transmitter (whether co-channel or adjacent channel) at the receiver input (allowing for the effect of receiver filtering):
   I_i = P_i L_i + α_i + β_i
- (d) Sum the interfering powers at the receiver and allow for the shadowing margin:  $I = 10 \log_{10} \Sigma 10^{(l_i/10)} + \gamma$
- (e) Check the effective C/I ratio (C-I) against the threshold value \(\lambda\).

### 1.3. Mobile-base Path Algorithm

(a) Take each cell that has a potentially interfering mobile station (MS). If N is the number of carrier frequencies allocated to that cell that can cause potential interference to the base station (BS), assume there are N MS's, one radiating each carrier, in that cell.


A proportion of the total number of MS's so identified (e.g. 20%) should be assumed to be at the worst case locations of their cells and the rest at the mid-point of their cells.

Alternatively a "Monte Carlo" simulation can be undertaken in which a number of "snapshots" of the interference scenario are taken. In each snapshot, the interfering MS's are placed at random locations (uniformly distributed) within their cells. To find for example the 90% C/I value, 100 snapshots could be taken, and the C/I which is exceeded by 90 of the snapshots used.

- (b) Perform steps (b) to (e) of the base-mobile path algorithm.
- 1.4. Notes on Calculation of Parameters
- (a) P, P_i These should be supplied by the public land mobile network (PLMN) operators. For DCS-1800 transmitters, each P, P_i, is the power in the active part of the time slot
- (b) L, L_i These can either be calculated using appropriate terrain modelling, or some simplified power distance law, e.g. d^{-3.3}.
- (c)  $\alpha_i$ ,  $\alpha_j$ . These should be supplied by the PLMN operators.
- (d)  $\beta_i$  These can be read off Figure A3-1
- (e) If shadowing effects have been allowed for in the calculation of L and L_i, γ can be set to 0. Otherwise a value of 7 dB could be used (this assumes the wanted and unwanted signals each have a 5 dB shadowing margin (log-normal distribution) and the composite shadowing margin is 1,41 x 5 dB, i.e. 7 dB).
- (f) \(\lambda\) can be taken as follows:

DCS receiver: = 9 dB

Note: The calculation must take into account all interfering transmitters from the wanted PLMN as well those from the neighbouring PLMN's.



Technical parameters of the DCS-1800 system

#### C/I ratios

The C/I ratio is the ratio between signal power to interfering signal power at the receiver input during the active part of the DCS-1800 timeslot including multiple interferers.

The following C/I ratios apply:

Wanted	Interferer	Co-channel	200 kHz	400 kHz	600 kHz
DCS-1800 (1)	DCS-1800	9 dB	- 9 dB	- 41 dB	- 49 dB

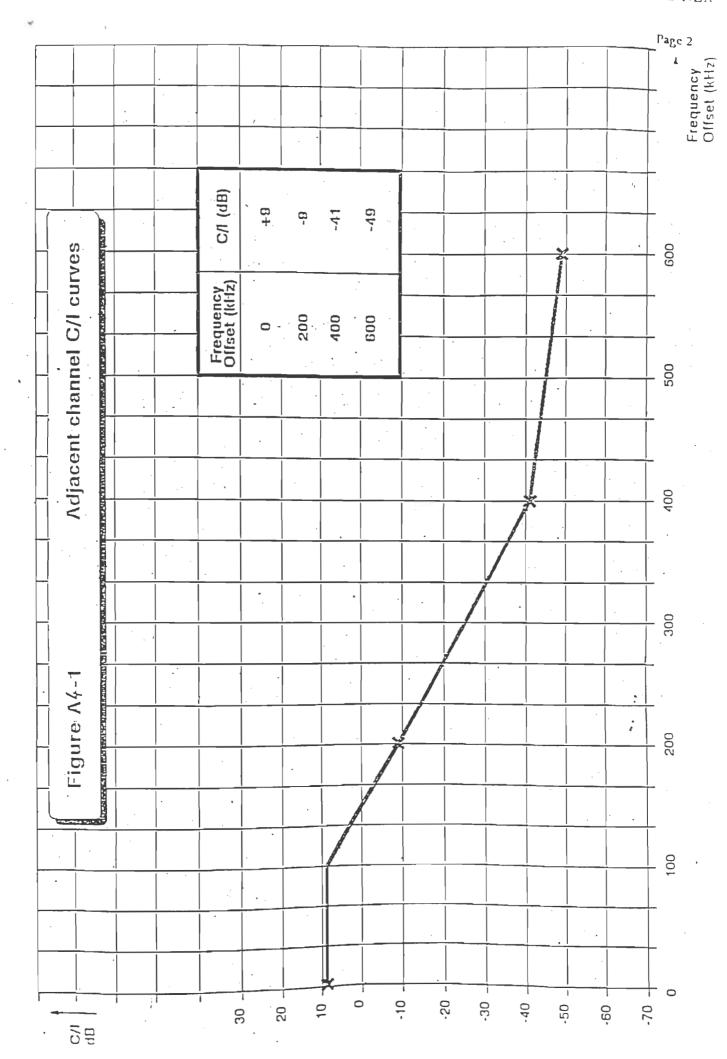
A curve indicating C/I values for intermediate values of frequency offset are attached to this Annex.

Notes:

(Figure A4-1)

Minimum field strength to be protected (Emin):

(50% of location - 50% of time)


DCS-1800 MS

42 dBµV/m (1)

DCS-1800 BS

38 dB_UV/m (1)

(1) Values from GSM recommendation 05-05 (Version 4.3.0)



562         1720,2000         1815,2000           563         1720,4000         1815,4000           564         1720,6000         1815,6000           565         1720,8000         1815,8000           566         1721,0000         1816,0000           567         1721,2000         1816,4000           568         1721,4000         1816,6000           569         1721,8000         1816,6000           570         1721,8000         1817,0000           571         1722,0000         1817,0000           572         1722,2000         1817,4000           573         1722,4000         1817,6000           574         1722,6000         1817,8000           575         1722,8000         1818,000           576         1723,0000         1818,000           577         1723,2000         1818,000           578         1723,8000         1818,000           579         1723,8000         1818,000           579         1723,8000         1819,000           581         1724,000         1819,000           582         1724,2000         1819,200           583         1724,4000         1819,800 </th <th></th> <th></th> <th></th>			
564         1720,6000         1815,6000           565         1720,8000         1815,8000           566         1721,0000         1816,0000           567         1721,2000         1816,2000           568         1721,4000         1816,4000           569         1721,6000         1816,6000           570         1721,8000         1816,8000           571         1722,0000         1817,0000           572         1722,2000         1817,4000           573         1722,4000         1817,6000           574         1722,6000         1817,8000           575         1722,8000         1817,8000           576         1723,0000         1818,0000           577         1723,2000         1818,000           578         1723,4000         1818,000           579         1723,6000         1818,8000           580         1723,8000         1818,8000           581         1724,0000         1819,2000           582         1724,2000         1819,2000           583         1724,4000         1819,8000           584         1724,6000         1819,8000           585         1724,8000         182	562	1720,2000	1815,2000
565         1720,8000         1815,8000           566         1721,0000         1816,0000           567         1721,2000         1816,2000           568         1721,4000         1816,4000           569         1721,6000         1816,6000           570         1721,8000         1816,8000           571         1722,0000         1817,0000           572         1722,2000         1817,2000           573         1722,4000         1817,4000           574         1722,6000         1817,6000           575         1722,8000         1817,8000           576         1723,0000         1818,000           577         1723,2000         1818,000           578         1723,4000         1818,600           579         1723,6000         1818,600           580         1723,8000         1818,800           581         1724,0000         1819,000           582         1724,2000         1819,400           583         1724,4000         1819,400           584         1724,6000         1819,8000           585         1724,8000         1820,000           586         1725,0000         1820,000 </td <td></td> <td></td> <td></td>			
566         1721,0000         1816,0000           567         1721,2000         1816,2000           568         1721,4000         1816,4000           569         1721,6000         1816,6000           570         1721,8000         1816,8000           571         1722,0000         1817,0000           572         1722,2000         1817,2000           573         1722,4000         1817,4000           574         1722,6000         1817,8000           575         1722,8000         1817,8000           576         1723,0000         1818,000           577         1723,2000         1818,000           578         1723,4000         1818,6000           579         1723,6000         1818,6000           580         1723,8000         1818,8000           581         1724,0000         1819,000           582         1724,2000         1819,2000           583         1724,4000         1819,400           584         1724,6000         1819,8000           585         1724,8000         1819,8000           586         1725,0000         1820,0000           587         1725,0000         1820,			
567         1721,2000         1816,2000           568         1721,4000         1816,4000           569         1721,6000         1816,6000           570         1721,8000         1816,8000           571         1722,0000         1817,0000           572         1722,2000         1817,2000           573         1722,4000         1817,4000           574         1722,6000         1817,8000           575         1722,8000         1817,8000           576         1723,0000         1818,0000           577         1723,2000         1818,000           578         1723,4000         1818,6000           579         1723,6000         1818,6000           580         1723,8000         1818,8000           581         1724,0000         1819,000           582         1724,2000         1819,000           583         1724,4000         1819,4000           584         1724,6000         1819,8000           585         1724,8000         1820,000           587         1725,2000         1820,2000           588         1725,4000         1820,000           590         1725,8000         1821,0	565	1720,8000	
568         1721,4000         1816,4000           569         1721,6000         1816,6000           570         1721,8000         1816,8000           571         1722,0000         1817,0000           572         1722,2000         1817,2000           573         1722,4000         1817,4000           574         1722,6000         1817,6000           575         1722,8000         1818,0000           576         1723,0000         1818,0000           577         1723,2000         1818,000           578         1723,4000         1818,6000           579         1723,6000         1818,6000           580         1723,8000         1818,8000           581         1724,0000         1819,000           582         1724,2000         1819,000           583         1724,4000         1819,4000           584         1724,6000         1819,8000           585         1724,8000         1819,8000           586         1725,0000         1820,0000           587         1725,2000         1820,000           589         1725,6000         1820,000           591         1726,0000         1821,0	566	1721,0000	1816,0000
569         1721,6000         1816,6000           570         1721,8000         1816,8000           571         1722,0000         1817,0000           572         1722,2000         1817,2000           573         1722,4000         1817,4000           574         1722,6000         1817,6000           575         1722,8000         1818,0000           576         1723,0000         1818,0000           577         1723,2000         1818,0000           578         1723,6000         1818,6000           579         1723,6000         1818,6000           580         1723,8000         1818,6000           581         1724,0000         1819,0000           582         1724,2000         1819,0000           583         1724,4000         1819,4000           584         1724,6000         1819,6000           585         1724,8000         1820,2000           587         1725,2000         1820,2000           588         1725,0000         1820,0000           590         1725,8000         1821,0000           591         1726,0000         1821,0000           593         1726,0000         1	567	1721,2000	1816,2000
570         1721,8000         1816,8000           571         1722,0000         1817,0000           572         1722,2000         1817,2000           573         1722,4000         1817,4000           574         1722,6000         1817,6000           575         1722,8000         1817,8000           576         1723,0000         1818,0000           577         1723,2000         1818,4000           578         1723,4000         1818,6000           579         1723,6000         1818,6000           580         1723,8000         1818,6000           581         1724,0000         1819,0000           582         1724,2000         1819,2000           583         1724,4000         1819,4000           584         1724,6000         1819,6000           585         1724,8000         1820,0000           587         1725,2000         1820,2000           588         1725,0000         1820,4000           589         1725,6000         1820,000           591         1726,0000         1821,000           592         1726,2000         1821,4000           593         1726,4000         182	568	1721,4000	1816,4000
571         1722,0000         1817,0000           572         1722,2000         1817,2000           573         1722,4000         1817,4000           574         1722,6000         1817,6000           575         1722,8000         1817,8000           576         1723,0000         1818,0000           577         1723,2000         1818,2000           578         1723,4000         1818,6000           579         1723,6000         1818,6000           580         1723,8000         1818,8000           581         1724,0000         1819,0000           582         1724,2000         1819,2000           583         1724,4000         1819,6000           584         1724,6000         1819,8000           585         1724,8000         1820,0000           587         1725,2000         1820,0000           588         1725,0000         1820,000           589         1725,6000         1820,000           590         1725,8000         1821,000           591         1726,0000         1821,000           592         1726,6000         1821,8000           593         1726,8000         1822,	569	1721,6000	1816,6000
572         1722,2000         1817,2000           573         1722,4000         1817,4000           574         1722,6000         1817,6000           575         1722,8000         1817,8000           576         1723,0000         1818,0000           577         1723,2000         1818,2000           578         1723,4000         1818,4000           579         1723,6000         1818,6000           580         1723,8000         1818,8000           581         1724,0000         1819,0000           582         1724,2000         1819,2000           583         1724,4000         1819,6000           584         1724,6000         1819,8000           585         1724,8000         1820,0000           586         1725,0000         1820,0000           587         1725,2000         1820,0000           589         1725,6000         1820,000           590         1725,8000         1821,000           591         1726,0000         1821,000           592         1726,6000         1821,8000           593         1726,6000         1822,0000           595         1726,8000         1822	570	1721,8000	1816,8000
573         1722,4000         1817,4000           574         1722,6000         1817,6000           575         1722,8000         1817,8000           576         1723,0000         1818,0000           577         1723,2000         1818,2000           578         1723,4000         1818,4000           579         1723,6000         1818,6000           580         1723,8000         1819,0000           581         1724,0000         1819,0000           582         1724,2000         1819,2000           583         1724,4000         1819,4000           584         1724,6000         1819,6000           585         1724,8000         1820,0000           586         1725,0000         1820,0000           587         1725,2000         1820,0000           589         1725,6000         1820,0000           590         1725,8000         1821,0000           591         1726,0000         1821,2000           593         1726,4000         1821,2000           594         1726,6000         1821,8000           595         1726,8000         1822,0000           597         1727,2000         1	571	1722,0000	1817,0000
574         1722,6000         1817,6000           575         1722,8000         1817,8000           576         1723,0000         1818,0000           577         1723,2000         1818,2000           578         1723,4000         1818,4000           579         1723,6000         1818,6000           580         1723,8000         1819,0000           581         1724,0000         1819,000           582         1724,2000         1819,2000           583         1724,4000         1819,6000           584         1724,6000         1819,6000           585         1724,8000         1819,8000           586         1725,0000         1820,0000           587         1725,2000         1820,0000           588         1725,4000         1820,4000           589         1725,6000         1821,0000           590         1726,0000         1821,0000           591         1726,2000         1821,4000           592         1726,8000         1821,8000           595         1726,8000         1822,0000           597         1727,0000         1822,2000           599         1727,6000         18	572	1722,2000	1817,2000
575         1722,8000         1817,8000           576         1723,0000         1818,0000           577         1723,2000         1818,2000           578         1723,4000         1818,4000           579         1723,6000         1818,6000           580         1723,8000         1818,8000           581         1724,0000         1819,0000           582         1724,2000         1819,2000           583         1724,4000         1819,4000           584         1724,6000         1819,6000           585         1724,8000         1819,8000           586         1725,0000         1820,0000           587         1725,2000         1820,4000           589         1725,6000         1820,6000           590         1725,8000         1820,8000           591         1726,0000         1821,0000           592         1726,0000         1821,000           593         1726,4000         1821,8000           594         1726,6000         1821,8000           595         1726,8000         1822,0000           597         1727,2000         1822,6000           601         1728,000         182	573	1722,4000	1817,4000
576         1723,0000         1818,0000           577         1723,2000         1818,2000           578         1723,4000         1818,4000           579         1723,6000         1818,6000           580         1723,8000         1818,8000           581         1724,0000         1819,0000           582         1724,2000         1819,2000           583         1724,4000         1819,6000           584         1724,6000         1819,8000           585         1724,8000         1819,8000           586         1725,0000         1820,0000           587         1725,2000         1820,2000           588         1725,4000         1820,6000           590         1725,8000         1820,6000           591         1726,0000         1821,0000           592         1726,2000         1821,000           593         1726,4000         1821,4000           594         1726,6000         1821,8000           595         1727,0000         1822,2000           597         1727,2000         1822,2000           598         1727,4000         1822,8000           601         1728,000         182	574	1722,6000	1817,6000
577         1723,2000         1818,2000           578         1723,4000         1818,4000           579         1723,6000         1818,6000           580         1723,8000         1818,8000           581         1724,0000         1819,0000           582         1724,2000         1819,2000           583         1724,4000         1819,6000           584         1724,6000         1819,8000           585         1724,8000         1819,8000           586         1725,0000         1820,0000           587         1725,2000         1820,4000           589         1725,6000         1820,6000           590         1725,8000         1820,8000           591         1726,0000         1821,0000           592         1726,2000         1821,000           593         1726,4000         1821,4000           594         1726,6000         1821,8000           595         1726,8000         1822,0000           596         1727,0000         1822,0000           597         1727,2000         1822,6000           600         1727,8000         1822,8000           601         1728,000         182	575	1722,8000	1817,8000
578         1723,4000         1818,4000           579         1723,6000         1818,6000           580         1723,8000         1818,8000           581         1724,0000         1819,0000           582         1724,2000         1819,2000           583         1724,4000         1819,4000           584         1724,6000         1819,6000           585         1724,8000         1819,8000           586         1725,0000         1820,0000           587         1725,2000         1820,2000           588         1725,4000         1820,6000           590         1725,8000         1820,6000           591         1726,0000         1821,0000           592         1726,2000         1821,2000           593         1726,4000         1821,4000           594         1726,6000         1821,8000           595         1726,8000         1822,0000           596         1727,0000         1822,0000           597         1727,2000         1822,8000           600         1728,000         1823,000           601         1728,000         1823,000           602         1728,000         1823,0	576	1723,0000	1818,0000
578         1723,4000         1818,4000           579         1723,6000         1818,6000           580         1723,8000         1818,8000           581         1724,0000         1819,0000           582         1724,2000         1819,2000           583         1724,4000         1819,4000           584         1724,6000         1819,6000           585         1724,8000         1819,8000           586         1725,0000         1820,0000           587         1725,2000         1820,2000           588         1725,4000         1820,6000           590         1725,8000         1820,6000           591         1726,0000         1821,0000           592         1726,2000         1821,2000           593         1726,4000         1821,4000           594         1726,6000         1821,8000           595         1726,8000         1822,0000           596         1727,0000         1822,0000           597         1727,2000         1822,8000           600         1728,000         1823,000           601         1728,000         1823,000           602         1728,000         1823,0			1818,2000
579         1723,6000         1818,6000           580         1723,8000         1818,8000           581         1724,0000         1819,0000           582         1724,2000         1819,2000           583         1724,4000         1819,4000           584         1724,6000         1819,6000           585         1724,8000         1819,8000           586         1725,0000         1820,2000           587         1725,2000         1820,2000           588         1725,4000         1820,4000           589         1725,6000         1820,6000           590         1725,8000         1821,0000           591         1726,0000         1821,0000           592         1726,2000         1821,4000           593         1726,4000         1821,6000           594         1726,6000         1821,8000           595         1727,0000         1822,0000           596         1727,0000         1822,0000           599         1727,6000         1822,8000           601         1728,000         1823,2000           602         1728,2000         1823,4000           603         1728,4000         18			
580         1723,8000         1818,8000           581         1724,0000         1819,0000           582         1724,2000         1819,2000           583         1724,4000         1819,4000           584         1724,6000         1819,6000           585         1724,8000         1819,8000           586         1725,0000         1820,2000           587         1725,2000         1820,4000           589         1725,6000         1820,6000           590         1725,8000         1820,8000           591         1726,0000         1821,0000           592         1726,2000         1821,2000           593         1726,4000         1821,4000           594         1726,6000         1821,6000           595         1726,8000         1821,8000           596         1727,0000         1822,0000           597         1727,2000         1822,4000           599         1727,6000         1822,8000           601         1728,000         1823,4000           602         1728,2000         1823,4000           603         1728,4000         1823,8000           604         1728,8000         18			
581         1724,0000         1819,0000           582         1724,2000         1819,2000           583         1724,4000         1819,4000           584         1724,6000         1819,6000           585         1724,8000         1819,8000           586         1725,0000         1820,2000           587         1725,2000         1820,2000           588         1725,4000         1820,6000           590         1725,8000         1820,8000           591         1726,0000         1821,0000           592         1726,2000         1821,4000           593         1726,4000         1821,4000           594         1726,6000         1821,4000           595         1726,8000         1821,8000           596         1727,0000         1822,0000           597         1727,2000         1822,4000           599         1727,6000         1822,8000           601         1728,0000         1823,0000           602         1728,2000         1823,4000           603         1728,4000         1823,6000           604         1728,6000         1823,8000           605         1728,8000         1			
582         1724,2000         1819,2000           583         1724,4000         1819,4000           584         1724,6000         1819,6000           585         1724,8000         1819,8000           586         1725,0000         1820,2000           587         1725,2000         1820,2000           588         1725,4000         1820,4000           589         1725,8000         1820,6000           590         1725,8000         1821,0000           591         1726,0000         1821,0000           592         1726,2000         1821,2000           593         1726,4000         1821,4000           594         1726,6000         1821,6000           595         1726,8000         1822,0000           596         1727,0000         1822,0000           597         1727,2000         1822,2000           598         1727,4000         1822,4000           599         1727,6000         1822,8000           601         1728,0000         1823,2000           602         1728,2000         1823,4000           603         1728,8000         1823,8000           604         1729,0000         1			
583         1724,4000         1819,4000           584         1724,6000         1819,6000           585         1724,8000         1819,8000           586         1725,0000         1820,0000           587         1725,2000         1820,4000           588         1725,4000         1820,6000           590         1725,8000         1820,8000           591         1726,0000         1821,0000           592         1726,2000         1821,2000           593         1726,4000         1821,4000           594         1726,6000         1821,6000           595         1726,8000         1822,0000           596         1727,0000         1822,0000           597         1727,2000         1822,000           598         1727,4000         1822,4000           599         1727,6000         1822,8000           600         1728,0000         1823,0000           601         1728,0000         1823,0000           602         1728,2000         1823,4000           603         1728,4000         1823,8000           605         1728,8000         1823,8000           606         1729,0000         18			
584         1724,6000         1819,6000           585         1724,8000         1819,8000           586         1725,0000         1820,0000           587         1725,2000         1820,2000           588         1725,4000         1820,6000           589         1725,6000         1820,8000           590         1725,8000         1820,8000           591         1726,0000         1821,0000           592         1726,2000         1821,2000           593         1726,4000         1821,4000           594         1726,6000         1821,8000           595         1726,8000         1822,0000           596         1727,0000         1822,2000           597         1727,2000         1822,2000           598         1727,4000         1822,4000           599         1727,6000         1822,8000           600         1728,0000         1823,0000           601         1728,0000         1823,0000           602         1728,4000         1823,4000           603         1728,8000         1823,8000           605         1728,8000         1824,0000           606         1729,0000         1			
585         1724,8000         1819,8000           586         1725,0000         1820,0000           587         1725,2000         1820,2000           588         1725,4000         1820,6000           589         1725,6000         1820,8000           590         1725,8000         1820,8000           591         1726,0000         1821,0000           592         1726,2000         1821,2000           593         1726,4000         1821,4000           594         1726,6000         1821,6000           595         1726,8000         1822,0000           596         1727,0000         1822,0000           597         1727,2000         1822,2000           598         1727,4000         1822,6000           600         1727,8000         1822,8000           601         1728,0000         1823,0000           602         1728,2000         1823,4000           603         1728,4000         1823,6000           605         1728,8000         1823,8000           606         1729,0000         1824,000           607         1729,2000         1824,000           608         1729,4000         182			
586         1725,0000         1820,0000           587         1725,2000         1820,2000           588         1725,4000         1820,4000           589         1725,6000         1820,6000           590         1725,8000         1820,8000           591         1726,0000         1821,0000           592         1726,2000         1821,2000           593         1726,4000         1821,4000           594         1726,6000         1821,6000           595         1726,8000         1821,8000           596         1727,0000         1822,0000           597         1727,2000         1822,4000           599         1727,6000         1822,8000           600         1727,8000         1822,8000           601         1728,0000         1823,0000           602         1728,2000         1823,2000           603         1728,4000         1823,6000           604         1728,6000         1824,000           605         1728,8000         1824,000           606         1729,0000         1824,000           607         1729,2000         1824,2000           608         1729,4000         1824			
587         1725,2000         1820,2000           588         1725,4000         1820,4000           589         1725,6000         1820,6000           590         1725,8000         1820,8000           591         1726,0000         1821,0000           592         1726,2000         1821,2000           593         1726,4000         1821,4000           594         1726,6000         1821,6000           595         1726,8000         1821,8000           596         1727,0000         1822,2000           597         1727,2000         1822,2000           598         1727,4000         1822,4000           599         1727,6000         1822,8000           600         1727,8000         1823,0000           601         1728,0000         1823,2000           602         1728,2000         1823,4000           603         1728,4000         1823,8000           605         1728,8000         1824,000           606         1729,0000         1824,000           607         1729,2000         1824,2000           608         1729,4000         1824,6000           610         1729,8000         182			
588         1725,4000         1820,4000           589         1725,6000         1820,6000           590         1725,8000         1820,8000           591         1726,0000         1821,0000           592         1726,2000         1821,2000           593         1726,4000         1821,4000           594         1726,6000         1821,8000           595         1726,8000         1822,0000           596         1727,0000         1822,2000           597         1727,2000         1822,4000           599         1727,6000         1822,4000           600         1727,8000         1822,8000           601         1728,0000         1823,0000           602         1728,2000         1823,2000           603         1728,4000         1823,4000           604         1728,6000         1823,8000           605         1728,8000         1824,000           606         1729,0000         1824,000           607         1729,2000         1824,000           608         1729,4000         1824,8000           610         1729,8000         1824,8000           610         1729,8000         1824			
589         1725,6000         1820,6000           590         1725,8000         1820,8000           591         1726,0000         1821,0000           592         1726,2000         1821,2000           593         1726,4000         1821,4000           594         1726,6000         1821,6000           595         1726,8000         1822,0000           596         1727,0000         1822,0000           597         1727,2000         1822,2000           598         1727,4000         1822,4000           599         1727,6000         1822,8000           600         1727,8000         1823,0000           602         1728,0000         1823,2000           603         1728,4000         1823,4000           604         1728,6000         1823,6000           605         1728,8000         1823,8000           606         1729,0000         1824,000           607         1729,2000         1824,2000           608         1729,4000         1824,8000           610         1729,8000         1824,8000           610         1729,8000         1824,8000           611         1730,2000         18			
590         1725,8000         1820,8000           591         1726,0000         1821,0000           592         1726,2000         1821,2000           593         1726,4000         1821,4000           594         1726,6000         1821,6000           595         1726,8000         1821,8000           596         1727,0000         1822,0000           597         1727,2000         1822,2000           598         1727,4000         1822,4000           599         1727,6000         1822,8000           601         1728,0000         1823,0000           602         1728,0000         1823,2000           603         1728,4000         1823,4000           604         1728,6000         1823,6000           605         1728,8000         1823,8000           606         1729,0000         1824,0000           607         1729,2000         1824,2000           608         1729,4000         1824,4000           609         1729,6000         1824,8000           610         1729,8000         1824,8000           611         1730,0000         1825,0000			
591         1726,0000         1821,0000           592         1726,2000         1821,2000           593         1726,4000         1821,4000           594         1726,6000         1821,6000           595         1726,8000         1821,8000           596         1727,0000         1822,0000           597         1727,2000         1822,2000           598         1727,4000         1822,4000           599         1727,6000         1822,8000           600         1727,8000         1823,0000           601         1728,0000         1823,2000           602         1728,2000         1823,4000           603         1728,4000         1823,6000           604         1728,6000         1823,8000           605         1728,8000         1824,000           606         1729,0000         1824,000           607         1729,2000         1824,2000           609         1729,6000         1824,6000           610         1729,8000         1824,8000           611         1730,0000         1825,0000           612         1730,2000         1825,0000			
592         1726,2000         1821,2000           593         1726,4000         1821,4000           594         1726,6000         1821,6000           595         1726,8000         1821,8000           596         1727,0000         1822,0000           597         1727,2000         1822,2000           598         1727,4000         1822,4000           599         1727,6000         1822,6000           600         1727,8000         1823,000           601         1728,000         1823,2000           602         1728,2000         1823,4000           603         1728,4000         1823,6000           604         1728,6000         1823,8000           605         1728,8000         1824,000           606         1729,0000         1824,000           607         1729,2000         1824,2000           608         1729,4000         1824,6000           610         1729,8000         1824,8000           611         1730,0000         1825,0000           612         1730,2000         1825,2000			
593         1726,4000         1821,4000           594         1726,6000         1821,6000           595         1726,8000         1821,8000           596         1727,0000         1822,0000           597         1727,2000         1822,2000           598         1727,4000         1822,4000           599         1727,6000         1822,8000           600         1727,8000         1823,0000           601         1728,0000         1823,2000           602         1728,2000         1823,4000           603         1728,4000         1823,6000           604         1728,6000         1823,8000           605         1728,8000         1824,000           607         1729,2000         1824,2000           608         1729,4000         1824,4000           609         1729,6000         1824,6000           610         1729,8000         1824,8000           611         1730,0000         1825,0000           612         1730,2000         1825,2000			
594         1726,6000         1821,6000           595         1726,8000         1821,8000           596         1727,0000         1822,0000           597         1727,2000         1822,2000           598         1727,4000         1822,4000           599         1727,6000         1822,6000           600         1727,8000         1822,8000           601         1728,0000         1823,0000           602         1728,2000         1823,2000           603         1728,4000         1823,4000           604         1728,6000         1823,8000           605         1728,8000         1824,000           606         1729,0000         1824,2000           607         1729,2000         1824,2000           608         1729,4000         1824,4000           609         1729,6000         1824,6000           610         1729,8000         1824,8000           611         1730,0000         1825,0000			
595         1726,8000         1821,8000           596         1727,0000         1822,0000           597         1727,2000         1822,2000           598         1727,4000         1822,4000           599         1727,6000         1822,6000           600         1727,8000         1822,8000           601         1728,0000         1823,0000           602         1728,2000         1823,2000           603         1728,4000         1823,4000           604         1728,6000         1823,6000           605         1728,8000         1823,8000           606         1729,0000         1824,0000           607         1729,2000         1824,2000           608         1729,4000         1824,4000           609         1729,6000         1824,6000           610         1729,8000         1824,8000           611         1730,0000         1825,0000			
596         1727,0000         1822,0000           597         1727,2000         1822,2000           598         1727,4000         1822,4000           599         1727,6000         1822,6000           600         1727,8000         1822,8000           601         1728,0000         1823,0000           602         1728,2000         1823,2000           603         1728,4000         1823,4000           604         1728,6000         1823,8000           605         1728,8000         1823,8000           606         1729,0000         1824,0000           607         1729,2000         1824,2000           608         1729,4000         1824,4000           609         1729,6000         1824,6000           610         1729,8000         1824,8000           611         1730,0000         1825,0000			
597         1727,2000         1822,2000           598         1727,4000         1822,4000           599         1727,6000         1822,6000           600         1727,8000         1822,8000           601         1728,0000         1823,0000           602         1728,2000         1823,2000           603         1728,4000         1823,4000           604         1728,6000         1823,6000           605         1728,8000         1823,8000           606         1729,0000         1824,0000           607         1729,2000         1824,2000           608         1729,4000         1824,4000           609         1729,6000         1824,6000           610         1729,8000         1824,8000           611         1730,0000         1825,0000           612         1730,2000         1825,2000			
598         1727,4000         1822,4000           599         1727,6000         1822,6000           600         1727,8000         1822,8000           601         1728,0000         1823,0000           602         1728,2000         1823,2000           603         1728,4000         1823,4000           604         1728,6000         1823,6000           605         1728,8000         1823,8000           606         1729,0000         1824,0000           607         1729,2000         1824,2000           608         1729,4000         1824,4000           609         1729,6000         1824,6000           610         1729,8000         1824,8000           611         1730,0000         1825,0000           612         1730,2000         1825,2000			
599         1727,6000         1822,6000           600         1727,8000         1822,8000           601         1728,0000         1823,0000           602         1728,2000         1823,2000           603         1728,4000         1823,4000           604         1728,6000         1823,6000           605         1728,8000         1823,8000           606         1729,0000         1824,0000           607         1729,2000         1824,2000           608         1729,4000         1824,4000           609         1729,6000         1824,6000           610         1729,8000         1824,8000           611         1730,0000         1825,0000           612         1730,2000         1825,2000			
600         1727,8000         1822,8000           601         1728,0000         1823,0000           602         1728,2000         1823,2000           603         1728,4000         1823,4000           604         1728,6000         1823,6000           605         1728,8000         1823,8000           606         1729,0000         1824,0000           607         1729,2000         1824,2000           608         1729,4000         1824,4000           609         1729,6000         1824,8000           610         1729,8000         1824,8000           611         1730,0000         1825,0000           612         1730,2000         1825,2000			
601       1728,0000       1823,0000         602       1728,2000       1823,2000         603       1728,4000       1823,4000         604       1728,6000       1823,6000         605       1728,8000       1823,8000         606       1729,0000       1824,0000         607       1729,2000       1824,2000         608       1729,4000       1824,4000         609       1729,6000       1824,6000         610       1729,8000       1824,8000         611       1730,0000       1825,0000         612       1730,2000       1825,2000			
602       1728,2000       1823,2000         603       1728,4000       1823,4000         604       1728,6000       1823,6000         605       1728,8000       1823,8000         606       1729,0000       1824,0000         607       1729,2000       1824,2000         608       1729,4000       1824,4000         609       1729,6000       1824,6000         610       1729,8000       1824,8000         611       1730,0000       1825,0000         612       1730,2000       1825,2000			
603       1728,4000       1823,4000         604       1728,6000       1823,6000         605       1728,8000       1823,8000         606       1729,0000       1824,0000         607       1729,2000       1824,2000         608       1729,4000       1824,4000         609       1729,6000       1824,6000         610       1729,8000       1824,8000         611       1730,0000       1825,0000         612       1730,2000       1825,2000			
604         1728,6000         1823,6000           605         1728,8000         1823,8000           606         1729,0000         1824,0000           607         1729,2000         1824,2000           608         1729,4000         1824,4000           609         1729,6000         1824,6000           610         1729,8000         1824,8000           611         1730,0000         1825,0000           612         1730,2000         1825,2000			
605       1728,8000       1823,8000         606       1729,0000       1824,0000         607       1729,2000       1824,2000         608       1729,4000       1824,4000         609       1729,6000       1824,6000         610       1729,8000       1824,8000         611       1730,0000       1825,0000         612       1730,2000       1825,2000			
606       1729,0000       1824,0000         607       1729,2000       1824,2000         608       1729,4000       1824,4000         609       1729,6000       1824,6000         610       1729,8000       1824,8000         611       1730,0000       1825,0000         612       1730,2000       1825,2000			
607     1729,2000     1824,2000       608     1729,4000     1824,4000       609     1729,6000     1824,6000       610     1729,8000     1824,8000       611     1730,0000     1825,0000       612     1730,2000     1825,2000			
608     1729,4000     1824,4000       609     1729,6000     1824,6000       610     1729,8000     1824,8000       611     1730,0000     1825,0000       612     1730,2000     1825,2000			
609     1729,6000     1824,6000       610     1729,8000     1824,8000       611     1730,0000     1825,0000       612     1730,2000     1825,2000			
610     1729,8000     1824,8000       611     1730,0000     1825,0000       612     1730,2000     1825,2000			
611 1730,0000 1825,0000 612 1730,2000 1825,2000			
612 1730,2000 1825,2000			
613 1/30,4000 1825,4000			
	613	1/30,4000	1825,4000

614	1730,6000	1825,6000
615	1730,8000	1825,8000
616	1731,0000	1826,0000
617	1731,2000	1826,2000
618	1731,4000	1826,4000
619	1731,6000	1826,6000
620	1731,8000	1826,8000
621	1732,0000	1827,0000
622	1732,2000	1827,2000
623	1732,4000	1827,4000
624	1732,6000	1827,6000
625	1732,8000	1827,8000
626	1733,0000	1828,0000
627	1733,2000	1828,2000
628	1733,4000	1828,4000
629	1733,6000	1828,6000
630	1733,8000	1828,8000
631	1734,0000	1829,0000
632	1734,2000	1829,2000
633	1734,4000	1829,4000
634	1734,6000	1829,6000
635	1734,8000	1829,8000
636	1735,0000	1830,0000
637	1735,2000	1830,2000
638	1735,4000	1830,4000
639	1735,6000	1830,6000
640	1735,8000	1830,8000
641	1736,0000	1831,0000
642	1736,2000	1831,2000
643	1736,4000	1831,4000
644	1736,6000	1831,6000
645	1736,8000	1831,8000
646	1737,0000	1832,0000
647	1737,2000	1832,2000
648	1737,4000	1832,4000
649	1737,6000	1832,6000
650	1737,8000	1832,8000
651	1738,0000	1833,0000
652	1738,2000	1833,2000
653	1738,4000	1833,4000
654	1738,6000	1833,6000
655	1738,8000	1833,8000
656	1739,0000	1834,0000
	1739,0000	1834,2000
657		1834,4000
658	1739,4000	
659	1739,6000	1834,6000
660	1739,8000	1834,8000
661	1740,0000	1835,0000
662	1740,2000	1835,2000
663	1740,4000	1835,4000
664	1740,6000	1835,6000
665	1740,8000	1835,8000

	A-100 a a	1 2 2 2 2 2 2 2
666	1741,0000	1836,0000
667	1741,2000	1836,2000
668	1741,4000	1836,4000
669	1741,6000	1836,6000
670	1741,8000	1836,8000
671	1742,0000	1837,0000
672	1742,2000	1837,2000
673	1742,4000	1837,4000
674	1742,6000	1837,6000
675	1742,8000	1837,8000
676	1743,0000	1838,0000
677	1743,2000	1838,2000
678	1743,4000	1838,4000
679	1743,6000	1838,6000
680	1743,8000	1838,8000
681	1744,0000	1839,0000
682	1744,2000	1839,2000
683	1744,4000	1839,4000
684	1744,6000	1839,6000
685	1744,8000	1839,8000
686	1745,0000	1840,0000
687	1745,2000	1840,2000
688	1745,4000	1840,4000
689	1745,6000	1840,6000
690	1745,8000	1840,8000
691	1746,0000	1841,0000
692	1746,2000	1841,2000
693	1746,4000	1841,4000
694	1746,6000	1841,6000
695	1746,8000	1841,8000
696	1747,0000	1842,0000
697	1747,2000	1842,2000
698	1747,4000	1842,4000
699	1747,6000	1842,6000
700	1747,8000	1842,8000
701	1748,0000	1843,0000
702	1748,2000	1843,2000
703	1748,4000	1843,4000
704	1748,6000	1843,6000
705	1748,8000	1843,8000
706	1749,0000	1844,0000
707	1749,2000	1844,2000
707	1749,4000	1844,4000
709	1749,6000	1844,6000
710	1749,8000	1844,8000
	1750,0000	1845,0000
711	1750,0000	1845,2000
712		
713	1750,4000	1845,4000
714	1750,6000	1845,6000
715	1750,8000	1845,8000
716	1751,0000	1846,0000
717	1751,2000	1846,2000

718	1751,4000	1846,4000
719	1751,6000	1846,6000
720	1751,8000	1846,8000
721	1752,0000	1847,0000
722	1752,2000	1847,2000
723	1752,4000	1847,4000
724	1752,6000	1847,6000
725	1752,8000	1847,8000
726	1753,0000	1848,0000
727	1753,2000	1848,2000
728	1753,4000	1848,4000
729	1753,6000	1848,6000
730	1753,8000	1848,8000
731	1754,0000	1849,0000
732	1754,2000	1849,2000
733	1754,4000	1849,4000
734	1754,6000	1849,6000
735	1754,8000	1849,8000
736	1755,0000	1850,0000
737	1755,2000	1850,2000
738	1755,4000	1850,4000
739	1755,6000	1850,6000
740	1755,8000	1850,8000
741	1756,0000	1851,0000
742	1756,2000	1851,2000
743	1756,4000	1851,4000
744	1756,6000	1851,6000
745	1756,8000	1851,8000
746	1757,0000	1852,0000
747	1757,2000	1852,2000
748	1757,4000	1852,4000
749	1757,6000	1852,6000
750	1757,8000	1852,8000
751	1758,0000	1853,0000
752	1758,2000	1853,2000
753	1758,4000	1853,4000
754	1758,6000	1853,6000
755	1758,8000	1853,8000
756	1759,0000	1854,0000
757	1759,2000	1854,2000
758	1759,4000	1854,4000
759	1759,6000	1854,6000
760	1759,8000	1854,8000
761	1760,0000	1855,0000
762	1760,2000	1855,2000
763	1760,4000	1855,4000
764	1760,6000	1855,6000
765	1760,8000	1855,8000
766	1761,0000	1856,0000
767	1761,2000	1856,2000
768	1761,4000	1856,4000
		1856,6000
769	1761,6000	1000,0000

770	1761,8000	1856,8000
771	1762,0000	1857,0000
772	1762,2000	1857,2000
773	1762,4000	1857,4000
774	1762,6000	1857,6000
775	1762,8000	1857,8000
776	1763,0000	1858,0000
777	1763,2000	1858,2000
778	1763,4000	1858,4000
779	1763,6000	1858,6000
780	1763,8000	1858,8000
781	1764,0000	1859,0000
782	1764,2000	1859,2000
783	1764,4000	1859,4000
784	1764,6000	1859,6000
785	1764,8000	1859,8000
		1860,0000
786	1765,0000	
787	1765,2000	1860,2000
788	1765,4000	1860,4000
789	1765,6000	1860,6000
790	1765,8000	1860,8000
791	1766,0000	1861,0000
792	1766,2000	1861,2000
793	1766,4000	1861,4000
794	1766,6000	1861,6000
795	1766,8000	1861,8000
796	1767,0000	1862,0000
797	1767,2000	1862,2000
798	1767,4000	1862,4000
799	1767,6000	1862,6000
800	1767,8000	1862,8000
801	1768,0000	1863,0000
802	1768,2000	1863,2000
803	1768,4000	1863,4000
804	1768,6000	1863,6000
805	1768,8000	1863,8000
806	1769,0000	1864,0000
807	1769,2000	1864,2000
808	1769,4000	1864,4000
809	1769,6000	1864,6000
810	1769,8000	1864,8000
811	1770,0000	1865,0000
812	1770,2000	1865,2000
813	1770,4000	1865,4000
814	1770,6000	1865,6000
815	1770,8000	1865,8000
816	1771,0000	1866,0000
817	1771,0000	1866,2000
818	1771,4000	1866,4000
819	1771,6000	1866,6000
820	1771,8000	1866,8000
821	1772,0000	1867,0000

822	1772,2000	1867,2000
823	1772,4000	1867,4000
824	1772,6000	1867,6000
825	1772,8000	1867,8000
826	1773,0000	1868,0000
827	1773,2000	1868,2000
828	1773,4000	1868,4000
829	1773,6000	1868,6000
830	1773,8000	1868,8000
831	1774,0000	1869,0000
832	1774,2000	1869,2000
833	1774,4000	1869,4000
834	1774,6000	1869,6000
835	1774,8000	1869,8000
836	1775,0000	1870,0000
837	1775,2000	1870,2000
838	1775,4000	1870,4000
839	1775,6000	1870,6000
840	1775,8000	1870,8000
841	1776,0000	1871,0000
842	1776,2000	1871,2000
843	1776,4000	1871,4000
844	1776,6000	1871,6000
845	1776,8000	1871,8000
846	1777,0000	1872,0000
847	1777,2000	1872,2000
848	1777,4000	1872,4000
849	1777,6000	1872,6000
850	1777,8000	1872,8000
851	1778,0000	1873,0000
852	1778,2000	1873,2000
853	1778,4000	1873,4000
854	1778,6000	1873,6000
855	1778,8000	1873,8000
856	1779,0000	1874,0000
857	1779,2000	1874,2000
858	1779,4000	1874,4000
859	1779,6000	1874,6000
860	1779,8000	1874,8000
861	1780,0000	1875,0000
862	1780,2000	1875,2000
863	1780,4000	1875,4000
864	1780,4000	1875,6000
865	1780,8000	1875,8000
866	1781,0000	1876,0000
867	1781,0000	1876,2000
868	1781,2000	1876,4000
869	1781,6000	1876,6000
870	1781,8000	1876,8000
871	1782,0000	1877,0000
872	1782,2000	1877,2000
873	1782,4000	1877,4000

Umrechnung Kanāle - Frequenzen für DCS 1800

874	1782,6000	1877,6000
875	1782,8000	1877,8000
876	1783,0000	1878,0000
877	1783,2000	1878,2000
878	1783,4000	1878,4000
879	1783,6000	1878,6000
880	1783,8000	1878,8000
881	1784,0000	1879,0000
882	1784,2000	1879,2000
883	1784,4000	1879,4000
884	1784,6000	1879,6000
885	1784,8000	1879,8000

Annex 1

Preferential division of the frequency band

Page 1

1710 - 1785 / 1805 - 1880 MHz for DCS 1800

24.03.1994

frequency band					1710 (1	(805) - 172	1710 (1805) - 1725 (1820) MHz	Z			^	
channel number	512 - 518	519 - 524	525 - 530	531 - 536	537 - 543	544 - 549	250 - 255	556 - 561	562 - 568	569 - 574	275 - 580	581 - 586
no of channels	7	9	9	9	7	9	9	9	7	9	9	9
AUT/SUI/D	AUT	AUT	AUT	۵	D	D	D 556	SUI	SUI	SUI	SUI	SUI
AUT/SUI	AUT	AUT	AUT	AUT	AUT	AUT	SUI	SUI	SUI	SUI	SUI	SUI
AUT/D	AUT	AUT	AUT	AUT	۵	Q	۵	D	۵	Ω	AUT	AUT
AUT/D/CZE	AUT	AUT	AUT	D	Q	Q	D 556	CZE	CZE	CZE	CZE	CZE
AUT/CZE	AUT	AUT	AUT	AUT	AUT	AUT	CZE	CZE	CZE	CZE	CZE	CZE
AUT/CZE/SVK	AUT	AUT	AUT	SVK	SVK	SVK	SVK 556	CZE	CZE	CZE	CZE	CZE
AUT/SVK	AUT	AUT	AUT	AUT	SVK	SVK	SVK	SVK	SVK	SVK	AUT	AUT
AUT/SVK/HNG	AUT	AUT	AUT	SVK	SVK	SVK	SVK 556	HNG	HNG	HNG	HNG	HNG
AUT/HNG	AUT	AUT	AUT	AUT	AUT	AUT	HNG	HNG	HNG	HNG	HNG	HNG
AUT/HNG/SVN	AUT	AUT	AUT	SVN	SVN	NAS	SVN 556	HNG	HNG	HNG	HNG	HNG
AUT/SVN	AUT	AUT	AUT	AUT	NAS	NAS	SVN	SVN	SVN	SVN	AUT	AUT
AUT/SVN/I	AUT	AUT	AUT	SVN	NAS	NAS	SVN 556	_		_	_	_
AUT/I	AUT	AUT	AUT	AUT	AUT	AUT	_	-	_	_	_	_
AUT///SUI	AUT	AUT	AUT	_	_	_	1 556	SUI	SUI	SUI	SUI	SUI

The numbering of the channels is defined in Recommendation GSM 05.05 (Version 4.5.0). Channel number n corresponds to a carrier frequency FI(n) in the lower band and to a carrier frequency FU(n) in the upper band, defined by the following equations (frequencies are in MHz):

 $FI(n) = 1710,2 + 0,2^{*}(n - 512)$ Fu(n) = FI(n) + 95 Page 2 Preferential division of the frequency band

1710 - 1785 / 1805 - 1880 MHz for DCS 1800

24. 03. 1994

Annex 1

frequency band					1725 (	1725 (1820) - 1740 (1835) MHz	(1835) MI	Iz				
channel number	587 - 593	594 - 599	900 - 009	606 - 611	612-618	619 - 624	625 - 630	631 - 636	637 - 643	644 - 649	650 - 655	656 - 661
no of channels	7	9	9	9	7	9	9	9	7	9	9	9
AUT/SUI/D	INS	AUT	AUT	AUT 615	616	Q	۵	SUI	SUI	SUI	SUI	SUI
AUT/SUI	SUI	AUT	AUT	AUT	AUT	618 SUI	SUI	SUI	SUI	SUI	SUI	SUI
AUT/D	AUT	AUT	AUT	AUT	۵	۵	۵	۵	۵	۵	۵	۵
AUT/D/CZE	CZE	AUT	AUT	AUT 615	616	O	۵	CZE	CZE	CZE	CZE	CZE
AUT/CZE	CZE	AUT	AUT	AUT	AUT	618 CZE	CZE	CZE	CZE	CZE	CZE	CZE
AUT/CZE/SVK	CZE	AUT	AUT	<b>AUT 615</b>	616	SVK	SVK	CZE	CZE	CZE	CZE	CZE
AUT/SVK	AUT	AUT	AUT	AUT	SVK	SVK	SVK	SVK	SVK	SVK	SVK	SVK
AUT/SVK/HNG	HNG	AUT	AUT	<b>AUT 615</b>	616	SVK	SVK	HNG	HNG	HNG	HNG	HNG
AUT/HNG	HNG	AUT	AUT	AUT	AUT	618 HNG	HNG	HNG	HNG	HNG	HNG	HNG
AUT/HNG/SVN	HNG	AUT	AUT	AUT 615	616	SVN	SVN	HNG	HNG	HNG	HNG	HNG
AUT/SVN	AUT	AUT	AUT	AUT	SVN	SVN	SVN	SVN	SVN	SVN	SVN	SVN
AUT/SVN/I	1	AUT	AUT	AUT 615	616	SVN	SVN			_	_	_
AUTA		AUT	AUT	AUT	AUT	618 1		_	_	_	_	_
AUT/I/SUI	SUI	AUT	AUT	AUT 615	919	_	_	SUI	SUI	SUI	SUI	SUI

Page 3 Preferential division of the frequency band Annex 1

1710 - 1785 / 1805 - 1880 MHz for DCS 1800

24. 03. 1994

frequency band		v			1740 (1	835) - 1755	1740 (1835) - 1755 (1850) MHz	ZI.				
channel number	662 - 668	669 - 674	675 - 680	681 - 686	687 - 693	694 - 699	700 - 705	706 - 711	712 - 718	719 - 724	725 - 730	731 - 736
no of channels		9	9	9	7	9	9	9	7	9	9	9
AUT/SUI/D	AUT	AUT	AUT	۵	D	Q	Q	۵	INS	SUI	728 729	AUT
AUT/SUI	AUT	AUT	AUT	AUT	AUT	AUT	SUI	SUI	SUI	INS	INS	SUI
AUT/D	AUT	AUT	AUT	AUT	۵	Q	۵	۵	Q	Q	AUT	AUT
AUT/D/CZE	AUT	AUT	AUT	Ω	۵	Q	٥	۵	CZE	CZE	728 729	AUT
AUT/CZE	AUT	AUT	AUT	AUT	AUT	AUT	CZE	CZE	CZE	CZE	CZE	CZE
AUT/CZE/SVK	AUT	AUT	AUT	SVK	SVK	SVK	SVK	SVK	CZE	CZE	728 729	AUT
AUT/SVK	AUT	AUT	AUT	AUT	SVK	SVK	SVK	SVK	SVK	SVK	AUT	AUT
AUT/SVK/HNG	AUT	AUT	AUT .	SVK	SVK	SVK	SVK	SVK	HNG	HNG	728 729	AUT
AUT/HNG	AUT	AUT	AUT	AUT	AUT	AUT	HNG	HNG	HNG	HNG	HNG	HNG
AUT/HNG/SVN	AUT	AUT	AUT	SVN	SVN	SVN	SVN	SVN	HNG	HNG	728 729	AUT
AUT/SVN	AUT	AUT	AUT	AUT	SVN	SVN	SVN	SVN	SVN	SVN	AUT	AUT
AUT/SVN/I	AUT	AUT	AUT	SVN	SVN	SVN	SVN	SVN	_	1 728	8 729	AUT
AUT/I	AUT	AUT	AUT	AUT	AUT	AUT		_	_	_	-	_
AUT///SUI	AUT	AUT	AUT		-	_		_	SUI	SUI	728 729	AUT

Page 4 AUT 806 - 811 805 AUT 805 AUT 805 AUT 805 AUT 805 AUT 805 AUT CZE HNG AUT AUT AUT 9 805 800 - 805 HNG HNGI CZE HNG CZE SUI SUI 9 794 - 799 CZE CZE SVK HNG HNG HNG SUI SU 9 787 - 793 CZE CZE CZE SVK HNG HNG HNG SCI 781 - 786 SVK SVK SVK HNG SVN SVN Preferential division of the frequency band ۵ 9 1710 - 1785 / 1805 - 1880 MHz for DCS 1800 1755 (1850) - 1770 (1865) MHz 775 - 780 SVN AUT SVK SVK SVK AUT SVN 9 769 - 774 AUT SVK SVK AUT SVN SVN AUT 9 ۵ 762 - 768 AUT SVK SVN SVN SVN Ω Ω 756 - 761 SVK SVK AUT AUT SVN AUT 9 737 - 743 | 744 - 749 | 750 - 755 SVK SVK SVN SVN AUT AUT AUT ۵ Ω 9 750 AUT 750 750 AUT 750 AUT 750 AUT 750 **AUT 750** AUT AUT AUT AUT AUT AUT AUT 9 AUT AUT frequency band channel number AUT/SVK/HNG AUT/HNG/SVN no of channels AUT/CZE/SVK AUT/D/CZE **AUT/HNG** AUT/SUI/D **AUT/SVK AUT/SVN/I** AUT/CZE **AUT/SVN AUT///SU** 24.03.1994 **AUT/SUI** AUT/D AUT/I Annex 1

Page 5 868 - 873 | 874 - 879 | 880 - 885 HNG HNG HNG AUT CZE AUT AUT SUI 9 HNG HNG AUT SUI 9 CZE CZE CZE HNG HNG HNG HNG SUI AUT SUI 9 862 - 867 SUI AUT CZE CZE CZE CZE CZE HNG HNG HNG AUT SUI 9 831 - 836 | 837 - 843 | 844 - 849 | 850 - 855 | 856 - 861 HNG SVK SVK SVK SVK SVN Preferential division of the frequency band ۵ 9 1710 - 1785 / 1805 - 1880 MHz for DCS 1800 1770 (1865) - 1785 (1880) MHz SVK SVK SVK SVN SVN AUT AUT AUT 9 SVK SVN SVK SVK SVK AUT Ω AUT AUT 9 845 AUT 845 **AUT 845** 845 AUT 845 **AUT 845 AUT 845** SVK AUT AUT SVN AUT AUT AUT AUT AUT AUT AUT AUT AUT AUT AUT AUT AUT AUT AUT AUT AUT 9 825 - 830 AUT AUT AUT AUT AUT AUT AUT AUT AUT AUT AUT AUT 9 812 - 818 819 - 824 AUT AUT AUT AUT AUT AUT AUT AUT AUT AUT AUT AUT AUT 9 813 AUT 813 AUT 813 AUT 813 AUT AUT AUT AUT AUT AUT AUT AUT AUT AUT/HNG HNG CZE SUI frequency band channel number AUT/SVK/HNG AUT/HNG/SVN no of channels AUT/CZE/SVK AUT/D/CZE AUT/SVN/I AUT/SUI/D **AUT/SVK AUT/SVN AUT///SUI** 24. 03. 1994 AUT/D AUT/CZE **AUT/SUI** AUT/I Annex 1

Annex 1

Preferential division of the frequency band

Page 1

1710 - 1785 / 1805 - 1880 MHz for DCS 1800

29.09.1994

	l.a.l	<del>-</del>	_			_				_			_			_	
	581 - 586	9	CZE	CZE	CZE	SZE	AUT	HNG	HNG	HNG	AUT	1	HNG	HNG	HRV	HNG	HNG
	575 - 580	9	CZE	CZE	CZE	CZE	AUT	HNG	HNG	HNG	AUT	_	HNG	HNG	HRV	HNG	HNG
<i>y</i>	569 - 574	9	CZE	CZE	CZE	CZE	SVK	HNG	HNG	HNG	SVN	-	HNG	HNG	SVN	HNG	HNG
	562 - 568	7	CZE	CZE	CZE	CZE	SVK	HNG	HNG	HNG	SVN	_	HNG	HNG	SVN	HNG	HNG
Z	556 - 561	9	CZE	CZE	CZE	SVK	SVK	HNG	HNG	HNG	SVN		HNG	HNG	SVN	HNG	HNG
(1820) MH	550 - 555	9	D 556	CZE	SVK 556	SVK	SVK	SVK 556	HNG	SVN 556	SVN	SVN 556	SVN 556	HNG	SVN	SVK 556	SVN 556
1710 (1805) - 1725 (1820) MHz	544 - 549	9	D	AUT	SVK	SVK	SVK	SVK	AUT	SVN	SVN	SVN	SVN	HRV	SVN	SVK	SVN
	537 - 543	7	D	AUT	SVK	SVK	SVK	SVK	AUT	SVN	SVN	SVN	SVN	HRV	SVN	SVK	SVN
	531 - 536	9	Q	AUT	SVK	SVK	AUT	SVK	AUT	SVN	AUT	SVN	SVN	HRV	HRV	SVK	SVN
	525 - 530	9	AUT	AUT	AUT	SVK	AUT	AUT	AUT	AUT	AUT ·	AUT	HRV	HRV	HRV	SVK	SVN
	519 - 524	9	AUT	AUT	AUT	CZE	AUT	AUT	AUT	AUT	AUT	AUT	HRV	HRV	HRV	HNG	HNG
	512 - 518	7	AUT	AUT	AUT	CZE	AUT	AUT	AUT	AUT	AUT	AUT	HRV	HRV	HRV	HNG	HNG
frequency band	channel number	no of channels	AUT/D/CZE	AUT/CZE	AUT/CZE/SVK	CZE/SVK	AUT/SVK	AUT/SVK/HNG	AUT/HNG	AUT/HNG/SVN	AUT/SVN	AUT/SVN/I	HRV/HNG/SVN	HRV/HNG	HRV/SVN	HNG/SVK	HNG/SVN

The numbering of the channels is defined in Recommendation GSM 05.05 (Version 4.5.0). Channel number n corresponds to a carrier frequency Fi(n) in the lower band and to a carrier frequency Fu(n) in the upper band, defined by the following equations (frequencies are in MHz):

FI(n) = 1710,2 + 0,2*(n-512)Fu(n) = FI(n) + 95 Page 2 650 - 655 | 656 - 661 HNG FING ENG. CZE SVK HNG HNG HNG SVN HNG SVN 9 HNG CZE CZE CZE CZE CZE HNG HNG HNG HNG HNG SVN HNG SVN FING 9 637 - 643 | 644 - 649 HNG HNG HNG HNG SVK HNG HNG SVN CZE CZE SVN 9 HNG CZE CZE CZE CZE SVK HNG HNG HNG HNG HNG HNG ENG H SVN 631 - 636 HNG CZE CZE SVK SVK HNG HNG HNG HNG HNG SVN Preferential division of the frequency band 9 1710 - 1785 / 1805 - 1880 MHz for DCS 1800 1725 (1820) - 1740 (1835) MHz 606 - 611 | 612 - 618 | 619 - 624 | 625 - 630 SVN HNG SVN SVN SVK SVK SVK 9 618 CZE 618 HNG 618 HNG SVK SVK SVK SVK SVN SVN SVN SVN SVN SVK 9 616 616 616 616 616 616 SVN SVN SVK SVK SVK AUT AUT HRV 615 615 **AUT 615 AUT 615** AUT 615 **AUT 615** SVK HRV HRV SVK AUT AUT 9 HRV AUT 594 - 599 | 600 - 605 SVK SVK AUT AUT AUT HHV HRV AUT AUT AUT AUT AUT HRV 9 599 HNG 600 HNG 600 HHS HRV HRV AUT AUT AUT AUT AUT AUT CZE AUT 9 587 - 593 CZE CZE CZE CZE HNG HNG HNG HNG HRG HNG HNG AUT HH frequency band channel number HRV/HNG/SVN AUT/HNG/SVN no of channels AUT/CZE/SVK AUT/SVK/HNG AUT/D/CZE **AUT/HNG** AUT/SVN/I **HRV/HNG** HNG/SVN **AUT/SVN** HRV/SVN AUT/CZE CZE/SVK HNG/SVK **AUT/SVK** 29.09.1994 Annex 1

Page 3 731 - 736 AUT HNG HRG HNG AUT AUT AUT HRV AUT 9 706 - 711 | 712 - 718 | 719 - 724 | 725 - 730 729 728 729 728 729 728 729 HNG HNG CZE HNG AUT HRV 728 HNG SVN HNG HNG SVN SVK 9 HNG HNG HNG HNG HNG SVN FING HNG HNG HNG SVN CZE SVK SVN Preferential division of the frequency band 9 ۵ 1710 - 1785 / 1805 - 1880 MHz for DCS 1800 1740 (1835) - 1755 (1850) MHz 694 - 699 700 - 705 SVN SVN HNG SVK HNG SVK SVK SVK SVK SVK SVK SVK SVK SVK SVK SVN HRV SVN 9 687 - 693 SVN SVN SVN SVN HRV SVK SVK SVN SVK SVK SVK 681 - 686 SVN AUT SVN SVN HRV SVK AUT HRV 9 669 - 674 | 675 - 680 AUT SVK AUT HRV AUT AUT AUT AUT AUT HRV HRV HRV SVK CZE AUT AUT AUT AUT 662 - 668 HNG HNG AUT HRV HRV AUT AUT AUT frequency band channel number HRV/HNG/SVN AUT/SVK/HNG AUT/HNG/SVN AUT/CZE/SVK no of channels AUT/SVN/I AUT/D/CZE **HRV/HNG AUT/HNG** HRV/SVN AUT/CZE HNG/SVK HNG/SVN CZE/SVK AUT/SVK **AUT/SVN** 29.09.1994 Annex 1

Page 4 805 HRV 781 - 786 | 787 - 793 | 794 - 799 | 800 - 805 | 806 - 811 805 AUT 805 AUT 805 AUT 805 AUT 805 AUT HRG HRV HNG CZE AUT AUT 9 HNG HNG HNG ENG H HNG ENG HNG HR3 CZE CZE AUT HNG HNG ACT 9 ENG ENG HNG HNG HNG SVN HNG HNG HNG SVN CZE CZE SVK 9 HNG HNG HNG HNG CZE CZE CZE CZE SVK HNG HNG HNG SVN SVN SVN SVN HNG SVN SVK SVK SVN SVN SVK Preferential division of the frequency band 9 1710 - 1785 / 1805 - 1880 MHz for DCS 1800 1755 (1850) - 1770 (1865) MHz 762 - 768 | 769 - 774 | 775 - 780 SVN SVN SVN SVN H SVN SVK SVK SVK AUT SVK 9 SVK SVK AUT SVN HH SVN SVK SVK 9 AUT SVN SVN SVN HRV SVK SVK SVK SVK 756 - 761 SVK AUT AUT SVN SVN H H SVK AUT SVK AUT 9 750 - 755 SVK SVN SVK AUT SVN SVN SVK HHV AUT HRV AUT 9 749 742 SVK 742 SVN 737 - 743 | 744 - 749 AUT 750 **AUT 750** AUT 750 **AUT 750** HRV 750 **AUT 750** HRV H H CZE AUT AUT AUT AUT 9 FNG CZE AUT AUT AUT AUT AUT HRV HRV HH AUT frequency band channel number HRV/HNG/SVN **AUT/SVK/HNG** AUT/HNG/SVN no of channels AUT/CZE/SVK AUT/D/CZE AUT/SVN/I HRV/HNG HNG/SVK **AUT/HNG** HRV/SVN HNG/SVN **AUT/SVN** AUT/CZE CZE/SVK **AUT/SVK** 29.09.1994 Annex 1

Page 5 880 - 885 HNG HNG HNG HNG FING ENG HNG HNG HH AUT ဖ 874 - 879 HNG HNG HNG HNG HNG HRV ACT 9 868 - 873 HNG HNG ENG ENG ENG HNG AUT HRV 9 862 - 867 HNG HNG HNG HNG HRG AUT 9 856 - 861 SVK SVK SVK SVK HNG SVN SVN SVN SVN SVN Preferential division of the frequency band ۵ 9 1710 - 1785 / 1805 - 1880 MHz for DCS 1800 1770 (1865) - 1785 (1880) MHz 844 - 849 | 850 - 855 SVN SVN SVN SVK SVK SVK SVK SVN 9 SVK AUT SVN SVN SVN SVN SVK HRV SVN 9 845 845 845 AUT 845 AUT 845 AUT 845 837 - 843 SVN SVK SVK HRV SVN SVN AUT AUT HRV AUT 831 - 836 SVK AUT A ST AUT HRV HRV SVK AUT 9 825 - 830 HHV HHV SVK SVK AUT AUT AUT HRV AUT 9 819 - 824 CZE AUT HEV HEV HRV FING AUT AUT AUT AUT 9 812-818 813 HRV 813 AUT 813 AUT HRV HNG AUT AUT CZE AUT AUT AUT H HNG HNG CZE frequency band channel number AUT/HNG/SVN HRV/HNG/SVN AUT/SVK/HNG no of channels AUT/CZE/SVK AUT/D/CZE AUT/SVN/I HNG/SVN **AUT/SVN** HNG/SVK CZE/SVK **AUT/SVK** HRV/SVN AUT/HNG 29.09.1994 HRV/HNG AUT/CZE Annex 1

## **AUTSVKHN.XLS**

		VORZUGSFREQUEN AUT/SV			
	· -	7.01/04			
KANAL	Unterband	Oberband	KANAL	Unterband	Oberbano
512	1710,2000	1805,2000	668	1741,4000	1836,400
513	1710,4000	1805,4000	669	1741,6000	1836,600
514	1710,6000	1805,6000	670	1741,8000	1836,800
515	1710,8000	1805,8000	671	1742,0000	1837,000
516	1711,0000	1806,0000	672	1742,2000	1837,200
517	1711,2000	1806,2000	673	1742,4000	1837,400
518	1711,4000	1806,4000	674	1742,6000	1837,600
519	1711,6000	1806,6000	675	1742,8000	1837,800
520	1711,8000	1806,8000	676	1743,0000	1838,000
521	1712,0000	1807,0000	677	1743,2000	1838,200
522	1712,2000	1807,2000	678	1743,4000	1838,4000
523	1712,4000	1807,4000	679	1743,6000	1838,600
524	1712,6000	1807,6000	680	1743,8000	1838,800
525	1712,8000	1807,8000	729	1753,6000	1848,6000
526	1713,0000	1808,0000	730	1753,8000	1848,8000
527	1713,2000	1808,2000	731	1754,0000	1849,000
528	1713,4000	1808,4000	732	1754,2000	1849,2000
529	1713,6000	1808,6000	733	1754,4000	1849,4000
530	1713,8000	1808,8000	734	1754,6000	1849,6000
594	1726,6000	1821,6000	735	1754,8000	1849,8000
595	1726,8000	1821,8000	736	1755,0000	1850,0000
596	1727,0000	1822,0000	737	1755,2000	1850,2000
597	1727,2000	1822,2000	738	1755,4000	1850,4000
598	1727,4000	1822,4000	739	1755,6000	1850,6000
599	1727,6000	1822,6000	740	1755,8000	1850,8000
600	1727,8000	1822,8000	741	1756,0000	1851,0000
601	1728,0000	1823,0000	742	1756,2000	1851,2000
602	1728,2000	1823,2000	743	1756,4000	1851,4000
603	1728,4000	1823,4000	744	1756,6000	1851,6000
604	1728,6000	1823,6000	745	1756,8000	1851,8000
605	1728,8000	1823,8000	746	1757,0000	1852,0000
606	1729,0000	1824,0000	747	1757,2000	1852,2000
607	1729,2000	1824,2000	748	1757,4000	1852,4000
608	1729,4000	1824,4000	749	1757,6000	1852,6000
609	1729,6000	1824,6000	750	1757,8000	1852,8000
610	1729,8000	1824,8000	805	1768,8000	1863,8000
611	1730,0000	1825,0000	806	1769,0000	1864,0000
612	1730,2000	1825,2000	807	1769,2000	1864,2000
613	1730,4000	1825,4000	808	1769,4000	1864,4000
614	1730,6000	1825,6000	809	1769,6000	1864,6000
615	1730,8000	1825,8000	810	1769,8000	1864,8000
662	1740,2000	1835,2000	811	1770,0000	1865,0000
663	1740,4000	1835,4000	812	1770,2000	1865,200
664	1740,4000	1835,6000	813	1770,2000	1865,4000
665	1740,8000	1835,8000	814	1770,4000	1865,6000
666	1741,0000	1836,0000	815	1770,8000	1865,8000
667	1741,0000	1836,2000	816	1770,8000	1866,0000

#### **AUTSVKHN.XLS**

		VORZUGSFREQUEN			
		AUT/SV	K/HNG		
KANAL	Unterband	Oberband	KANAL	Unterband	Oberbano
817	1771,2000	1866,2000	835	1774,8000	1869,8000
818	1771,4000	1866,4000	836	1775,0000	1870,000
819	1771,6000	1866,6000	837	1775,2000	1870,200
820	1771,8000	1866,8000	838	1775,4000	1870,400
821	1772,0000	1867,0000	839	1775,6000	1870,600
822	1772,2000	1867,2000	840	1775,8000	1870,800
823	1772,4000	1867,4000	841	1776,0000	1871,000
824	1772,6000	1867,6000	842	1776,2000	1871,200
825	1772,8000	1867,8000	843	1776,4000	1871,400
826	1773,0000	1868,0000	844	1776,6000	1871,600
827	1773,2000	1868,2000	845	1776,8000	1871,800
828	1773,4000	1868,4000			
829	1773,6000	1868,6000			
830	1773,8000	1868,8000			
831	1774,0000	1869,0000			
832	1774,2000	1869,2000			
833	1774,4000	1869,4000			
834	1774,6000	1869,6000			

## **AUTSVN.XLS**

		VORZUGSFR	EQUENZEN 2	LANDERFAL	L	
			AUT/SVN			
KANAL	Unterband	Oberband		KANAL	Unterband	Oberband
512	1710,2000	1805,2000		603	1728,4000	1823,4000
513	1710,4000	1805,4000		604	1728,6000	1823,6000
514	1710,6000	1805,6000		605	1728,8000	1823,8000
515	1710,8000	1805,8000		606	1729,0000	1824,0000
516	1711,0000	1806,0000		607	1729,2000	1824,2000
517	1711,2000	1806,2000		608	1729,4000	1824,4000
518	1711,4000	1806,4000		609	1729,6000	1824,6000
519	1711,6000	1806,6000		610	1729,8000	1824,8000
520	1711,8000	1806,8000		611	1730,0000	1825,0000
521	1712,0000	1807,0000		662	1740,2000	1835,2000
522	1712,2000	1807,2000		663	1740,4000	1835,4000
523	1712,4000	1807,4000		664	1740,6000	1835,6000
524	1712,6000	1807,6000		665	1740,8000	1835,8000
525	1712,8000	1807,8000		666	1741,0000	1836,0000
526	1713,0000	1808,0000		667	1741,2000	1836,2000
527	1713,2000	1808,2000		668	1741,4000	1836,4000
528	1713,4000	1808,4000		669	1741,6000	1836,6000
529	1713,6000	1808,6000		670	1741,8000	1836,8000
530	1713,8000	1808,8000		671	1742,0000	1837,0000
531	1714,0000	1809,0000		672	1742,2000	1837,2000
532	1714,2000	1809,2000		673	1742,4000	1837,4000
533	1714,4000	1809,4000		674	1742,6000	1837,6000
534	1714,6000	1809,6000		675	1742,8000	1837,8000
535	1714,8000	1809,8000		676	1743,0000	1838,0000
536	1715,0000	1810,0000		677	1743,2000	1838,2000
575	1722,8000	1817,8000		678	1743,4000	1838,4000
576	1723,0000	1818,0000		679	1743,6000	1838,6000
577	1723,2000	1818,2000		680	1743,8000	1838,8000
578	1723,4000	1818,4000		681	1744,0000	1839,0000
579	1723,6000	1818,6000		682	1744,2000	1839,2000
580	1723,8000	1818,8000		683	1744,4000	1839,4000
581	1724,0000	1819,0000		684	1744,6000	1839,6000
582	1724,2000	1819,2000		685	1744,8000	1839,8000
583	1724,4000	1819,4000		686	1745,0000	1840,0000
584	1724,6000	1819,6000		725	1752,8000	1847,8000
585	1724,8000	1819,8000		726	1753,0000	1848,0000
586	1725,0000	1820,0000		727	1753,2000	1848,2000
587	1725,2000	1820,2000		728	1753,4000	1848,4000
594	1726,6000	1821,6000		729	1753,6000	1848,6000
595	1726,8000	1821,8000		730	1753,8000	1848,8000
596	1727,0000	1822,0000		731	1754,0000	1849,0000
597	1727,2000	1822,2000		732	1754,2000	1849,2000
598	1727,4000	1822,4000		733	1754,4000	1849,4000
599	1727,6000	1822,6000		734	1754,6000	1849,6000
600	1727,8000	1822,8000		735	1754,8000	1849,8000
601	1728,0000	1823,0000		736	1755,0000	1850,0000
602	1728,2000	1823,2000		737	1755,2000	1850,2000

#### **AUTSVN.XLS**

		VORZUGSFR	EQUENZEN 2	LANDERFAL	L	
			AUT/SVN			
KANAL	Unterband	Oberband		KANAL	Unterband	Oberband
737	1755,2000	1850,2000		822	1772,2000	1867,2000
737	1755,4000	1850,2000		823	1772,4000	1867,4000
739	1755,6000	1850,6000		824	1772,6000	1867,6000
740	1755,8000	1850,8000		825	1772,8000	1867,8000
741	1756,0000	1851,0000		826	1773,0000	1868,0000
742	1756,2000	1851,2000		827	1773,2000	1868,2000
742	1756,4000	1851,2000		828	1773,4000	1868,4000
744	1756,6000	1851,6000		829	1773,6000	1868,6000
745	1756,8000	1851,8000		830	1773,8000	1868,8000
746	1757,0000	1852,0000		831	1774,0000	1869,0000
747	1757,2000	1852,0000		832	1774,2000	1869,2000
747	1757,2000	1852,4000		833	1774,4000	1869,4000
749	1757,4000	1852,4000		834	1774,6000	1869,6000
750	1757,8000	1852,8000		835	1774,8000	1869,8000
751	1757,8000	1853,0000		836	1775,0000	1870,0000
752	1758,2000	1853,0000		862	1780,2000	1875,2000
753	1758,2000	1853,4000		863	1780,4000	1875,4000
754		1853,6000		864	1780,4000	1875,6000
755 755	1758,6000 1758,8000			865	1780,8000	1875,8000
756 756		1853,8000		866	1780,8000	1876,0000
757	1759,0000	1854,0000		867		
757 758	1759,2000	1854,2000		868	1781,2000 1781,4000	1876,2000
759	1759,4000	1854,4000		869	1781,4000	1876,4000
760	1759,6000 1759,8000	1854,6000 1854,8000		870		1876,6000
761	1760,0000			871	1781,8000 1782,0000	1876,8000
800	1767,8000	1855,0000		872	1782,0000	1877,0000
801	1767,8000	1862,8000 1863,0000		873	1782,2000	1877,2000
802						1877,4000
803	1768,2000	1863,2000		874 875	1782,6000	1877,6000
804	1768,4000	1863,4000		· 876	1782,8000	1877,8000
805	1768,6000	1863,6000			1783,0000	1878,0000
	1768,8000	1863,8000		877	1783,2000	1878,2000
806 807	1769,0000	1864,0000		878	1783,4000	1878,4000
	1769,2000	1864,2000		879	1783,6000	1878,6000
808	1769,4000	1864,4000		880	1783,8000	1878,8000
809	1769,6000	1864,6000		881	1784,0000	1879,0000
810	1769,8000	1864,8000		882	1784,2000	1879,2000
811	1770,0000	1865,0000		883	1784,4000	1879,4000
812	1770,2000	1865,2000		884	1784,6000	1879,6000
813	1770,4000	1865,4000		885	1784,8000	1879,8000
814	1770,6000	1865,6000				
815	1770,8000	1865,8000				
816	1771,0000	1866,0000				
817	1771,2000	1866,2000				
818	1771,4000	1866,4000				
819	1771,6000	1866,6000				
820	1771,8000	1866,8000				
821	1772,0000	1867,0000				

## **AUTI.XLS**

		VORZUGSFRI	EQUENZEN :	2 LANDERFAL	.L	
			AUT/I			
KANAL	Unterband	Oberband		KANAL	Unterband	Oberband
	1710.000	1005 0000		600	1728,4000	1823,4000
512	1710,2000	1805,2000		603	1728,4000	1823,6000
513	1710,4000	1805,4000		604		1823,8000
514	1710,6000	1805,6000		605	1728,8000	
515	1710,8000	1805,8000		606	1729,0000 1729,2000	1824,0000 1824,2000
516	1711,0000	1806,0000		607		
517	1711,2000	1806,2000		608	1729,4000	1824,4000
518	1711,4000	1806,4000		609	1729,6000	1824,6000
519	1711,6000	1806,6000		610	1729,8000	1824,8000
520	1711,8000	1806,8000		611	1730,0000	1825,0000
521	1712,0000	1807,0000		612	1730,2000	1825,2000
522	1712,2000	1807,2000		613	1730,4000	1825,4000
523	1712,4000	1807,4000		614	1730,6000	1825,6000
524	1712,6000	1807,6000		615	1730,8000	1825,8000
525	1712,8000	1807,8000		616	1731,0000	1826,0000
526	1713,0000	1808,0000		617	1731,2000	1826,2000
527	1713,2000	1808,2000		662	1740,2000	1835,2000
528	1713,4000	1808,4000		663	1740,4000	1835,4000
529	1713,6000	1808,6000		664	1740,6000	1835,6000
530	1713,8000	1808,8000		665	1740,8000	1835,8000
531	1714,0000	1809,0000		666	1741,0000	1836,0000
532	1714,2000	1809,2000		667	1741,2000	1836,2000
533	1714,4000	1809,4000		668	1741,4000	1836,4000
534	1714,6000	1809,6000		669	1741,6000	1836,6000
535	1714,8000	1809,8000		670	1741,8000	1836,8000
536	1715,0000	1810,0000		671	1742,0000	1837,0000
537	1715,2000	1810,2000		672	1742,2000	1837,2000
538	1715,4000	1810,4000		673	1742,4000	1837,4000
539	1715,6000	1810,6000		674	1742,6000	1837,6000
540	1715,8000	1810,8000		675	1742,8000	1837,8000
541	1716,0000	1811,0000		· 676	1743,0000	1838,0000
542	1716,2000	1811,2000		677	1743,2000	1838,2000
543	1716,4000	1811,4000	·	678	1743,4000	1838,4000
544	1716,6000	1811,6000		679	1743,6000	1838,6000
545	1716,8000	1811,8000		680	1743,8000	1838,8000
546	1717,0000	1812,0000		681	1744,0000	1839,0000
547	1717,2000	1812,2000		682	1744,2000	1839,2000
548	1717,4000	1812,4000		683	1744,4000	1839,4000
549	1717,6000	1812,6000		684	1744,6000	1839,6000
594	1726,6000	1821,6000		685	1744,8000	1839,8000
595	1726,8000	1821,8000		686	1745,0000	1840,0000
596	1727,0000	1822,0000		687	1745,2000	1840,2000
597	1727,2000	1822,2000		688	1745,4000	1840,4000
598	1727,4000	1822,4000		689	1745,6000	1840,6000
599	1727,6000	1822,6000		690	1745,8000	1840,8000
600	1727,8000	1822,8000		691	1746,0000	1841,0000
601	1728,0000	1823,0000		692	1746,2000	1841,2000
602	1728,2000	1823,2000		693	1746,4000	1841,4000

## **AUTI.XLS**

		VORZUGSFRE	QUENZEN 2	LANDERFAL	L	
			AUT/I			
			_			
KANAL	Unterband	Oberband		KANAL	Unterband	Oberband
						1070 1000
694	1746,6000	1841,6000		778	1763,4000	1858,4000
695	1746,8000	1841,8000		779	1763,6000	1858,6000
696	1747,0000	1842,0000		780	1763,8000	1858,8000
697	1747,2000	1842,2000		813	1770,4000	1865,4000
698	1747,4000	1842,4000		814	1770,6000	1865,6000
699	1747,6000	1842,6000		815	1770,8000	1865,8000
737	1755,2000	1850,2000		816	1771,0000	1866,0000
738	1755,4000	1850,4000		817	1771,2000	1866,2000
739	1755,6000	1850,6000		818	1771,4000	1866,4000
740	1755,8000	1850,8000		819	1771,6000	1866,6000
741	1756,0000	1851,0000		820	1771,8000	1866,8000
742	1756,2000	1851,2000		821	1772,0000	1867,0000
743	1756,4000	1851,4000		822	1772,2000	1867,2000
744	1756,6000	1851,6000		823	1772,4000	1867,4000
745	1756,8000	1851,8000		824	1772,6000	1867,6000
746	1757,0000	1852,0000		825	1772,8000	1867,8000
747	1757,2000	1852,2000		826	1773,0000	1868,0000
748	1757,4000	1852,4000		827	1773,2000	1868,2000
749	1757,6000	1852,6000		828	1773,4000	1868,4000
750	1757,8000	1852,8000		829	1773,6000	1868,6000
751	1758,0000	1853,0000		830	1773,8000	1868,8000
752	1758,2000	1853,2000		831	1774,0000	1869,0000
753	1758,4000	1853,4000		832	1774,2000	1869,2000
754	1758,6000	1853,6000		833	1774,4000	1869,4000
755	1758,8000	1853,8000		834	1774,6000	1869,6000
756	1759,0000	1854,0000		835	1774,8000	1869,8000
757	1759,2000	1854,2000		836	1775,0000	1870,0000
757	1759,4000	1854,4000		837	1775,2000	1870,2000
759				838	1775,4000	1870,4000
760	1759,6000	1854,6000		· 839	1775,4000	1870,4000
761	1759,8000	1854,8000		840	1775,8000	1870,8000
	1760,0000	1855,0000				
.762	1760,2000	1855,2000		841	1776,0000	1871,0000
763	1760,4000	1855,4000		842	1776,2000	1871,2000
764	1760,6000	1855,6000		843	1776,4000	1871,4000
765	1760,8000	1855,8000		844	1776,6000	1871,6000
766	1761,0000	1856,0000		845	1776,8000	1871,8000
767	1761,2000	1856,2000		846	1777,0000	1872,0000
768	1761,4000	1856,4000		847	1777,2000	1872,2000
769	1761,6000	1856,6000		848	1777,4000	1872,4000
770	1761,8000	1856,8000		849	1777,6000	1872,6000
771	1762,0000	1857,0000		850	1777,8000	1872,8000
772	1762,2000	1857,2000		851	1778,0000	1873,0000
773	1762,4000	1857,4000		852	1778,2000	1873,2000
774	1762,6000	1857,6000		853	1778,4000	1873,4000
775	1762,8000	1857,8000		854	1778,6000	1873,6000
776	1763,0000	1858,0000		855	1778,8000	1873,8000
777	1763,2000	1858,2000				

## AUTCZE.XLS

		VUHZUGSFH	EQUENZEN 2	LANDERFAL		
	<u> </u>		AUT/CZE			
KANAL	Unterband	Oberband		KANAL	Unterband	Oberbano
TOTITAL	Cinciband	000104114				
512	1710,2000	1805,2000		603	1728,4000	1823,400
513	1710,4000	1805,4000		604	1728,6000	1823,600
514	1710,6000	1805,6000		605	1728,8000	1823,800
515	1710,8000	1805,8000		606	1729,0000	1824,000
516	1711,0000	1806,0000		607	1729,2000	1824,200
517	1711,2000	1806,2000		608	1729,4000	1824,400
518	1711,4000	1806,4000		609	1729,6000	1824,600
519	1711,6000	1806,6000		610	1729,8000	1824,800
520	1711,8000	1806,8000		611	1730,0000	1825,000
521	1712,0000	1807,0000		612	1730,2000	1825,200
522	1712,2000	1807,2000		613	1730,4000	1825,400
523	1712,4000	1807,4000		614	1730,6000	1825,600
524	1712,6000	1807,6000		615	1730,8000	1825,800
525	1712,8000	1807,8000		616	1731,0000	1826,000
526	1713,0000	1808,0000		617	1731,2000	1826,200
527	1713,2000	1808,2000		662	1740,2000	1835,200
528	1713,4000	1808,4000		663	1740,4000	1835,400
529	1713,6000	1808,6000		664	1740,6000	1835,600
530	1713,8000	1808,8000		665	1740,8000	1835,800
531	1714,0000	1809,0000		666	1741,0000	1836,000
532	1714,2000	1809,2000		667	1741,2000	1836,200
533	1714,4000	1809,4000		668	1741,4000	1836,400
534	1714,6000	1809,6000		669	1741,6000	1836,600
535	1714,8000	1809,8000		670	1741,8000	1836,800
536	1715,0000	1810,0000		671	1742,0000	1837,000
537	1715,2000	1810,2000		672	1742,2000	1837,200
538	1715,4000	1810,4000		673	1742,4000	1837,400
539	1715,6000	1810,6000		674	1742,6000	1837,600
540	1715,8000	1810,8000		675	1742,8000	1837,800
541	1716,0000	1811,0000		676	1743,0000	1838,000
542	1716,2000	1811,2000		677	1743,2000	1838,200
543	1716,4000	1811,4000		678	1743,4000	1838,400
544	1716,6000	1811,6000		679	1743,6000	1838,600
545	1716,8000	1811,8000		680	1743,8000	1838,800
546	1717,0000	1812,0000		681	1744,0000	1839,000
547	1717,2000	1812,2000		682	1744,2000	1839,200
548	1717,4000	1812,4000		683	1744,4000	1839,400
549	1717,6000	1812,6000		684	1744,6000	1839,600
594	1726,6000	1821,6000		685	1744,8000	1839,800
595	1726,8000	1821,8000		686 .	1744,8000	1840,000
596	1727,0000	1822,0000		687	1745,0000	1840,000
597	1727,0000	<del></del>		688	1745,2000	1840,400
598		1822,2000		689	1745,4000	1840,400
599	1727,4000	1822,4000		690		
600	1727,6000	1822,6000		691	1745,8000	1840,800
601	1727,8000	1822,8000			1746,0000	1841,000
602	1728,0000 1728,2000	1823,0000 1823,2000		692 693	1746,2000 1746,4000	1841,200 1841,400

## AUTCZE.XLS

		VUNZUGSPN	EQUENZEN 2	PULL VI		
			AUT/CZE			
KANAL	Unterband	Oberband		KANAL	Unterband	Oberbano
694	1746,6000	1841,6000		778	1763,4000	1858,400
695	1746,8000	1841,8000		779	1763,6000	1858,600
696	1748,8000	1842,0000		780	1763,8000	1858,800
697	1747,0000	1842,2000		813	1770,4000	1865,400
698	1747,2000	1842,4000		814	1770,6000	1865,600
699	1747,4000	1842,6000		815	1770,8000	1865,800
737	1755,2000	1850,2000		816	1771,0000	1866,000
737	1755,2000	1850,4000		817	1771,2000	1866,200
739	1755,4000	1850,6000		818	1771,4000	1866,400
740	1755,8000	1850,8000		819	1771,6000	1866,600
	1756,0000	1851,0000		820	1771,8000	1866,800
741	#000000000000 ·	1851,2000		821	1771,0000	1867,000
742	1756,2000			822	1772,2000	1867,200
743	1756,4000	1851,4000		823	1772,4000	1867,400
744	1756,6000	1851,6000		824	1772,6000	1867,600
745	1756,8000	1851,8000		825	1772,8000	1867,800
746	1757,0000	1852,0000		826	1772,8000	1868,000
747	1757,2000	1852,2000		827		1868,200
748	1757,4000	1852,4000			1773,2000	1868,400
749	1757,6000	1852,6000		828	1773,4000	1868,600
750	1757,8000	1852,8000		829	1773,6000 1773,8000	1868,800
751	1758,0000	1853,0000		830		
752	1758,2000	1853,2000		831	1774,0000	1869,000
753	1758,4000	1853,4000		832	1774,2000	1869,200
754	1758,6000	1853,6000		833	1774,4000	1869,400
755	1758,8000	1853,8000		834	1774,6000	1869,600
756	1759,0000	1854,0000		835	1774,8000	1869,800
757	1759,2000	1854,2000		836	1775,0000	1870,000
758	1759,4000	1854,4000		837	1775,2000	1870,200
759	1759,6000	1854,6000		838	1775,4000	1870,400
760	1759,8000	1854,8000		· 839	1775,6000	1870,600
761	1760,0000	1855,0000		840	1775,8000	1870,800
762	1760,2000	1855,2000		841	1776,0000	1871,000
763	1760,4000	1855,4000		842	1776,2000	1871,200
764	1760,6000	1855,6000		843	1776,4000	1871,400
765	1760,8000	1855,8000		844	1776,6000	1871,600
766	1761,0000	1856,0000		845	1776,8000	1871,800
767	1761,2000	1856,2000		846	1777,0000	1872,000
768	1761,4000	1856,4000		847	1777,2000	1872,200
769	1761,6000	1856,6000		848	1777,4000	1872,400
770	1761,8000	1856,8000		849	1777,6000	1872,600
771	1762,0000	1857,0000		850	1777,8000	1872,800
772	1762,2000	1857,2000		851	1778,0000	1873,000
773	1762,4000	1857,4000		852	1778,2000	1873,200
774	1762,6000	1857,6000		853	1778,4000	1873,400
775	1762,8000	1857,8000		854	1778,6000	1873,600
776	1763,0000	1858,0000		855	1778,8000	1873,800
777	1763,2000	1858,2000				

## **AUTSULXLS**

		VORZUGSFR	AUT/SUI		T	
	· ·		A01/301_			
KANAL	Unterband	Oberband		KANAL	Unterband	Oberbano
510	1710 0000	1005 0000		603	1728,4000	1823,400
512	1710,2000	1805,2000		604	1728,6000	1823,600
513 514	1710,4000	1805,4000		605	1728,8000	1823,800
515	1710,6000	1805,6000 1805,8000		606	1729,0000	1824,000
516	1710,8000 1711,0000	1806,0000		607	1729,2000	1824,200
517	1711,0000	1806,0000		608	1729,4000	1824,400
518	1711,4000	1806,2000		609	1729,6000	1824,600
519	1711,4000	1806,6000		610	1729,8000	1824,800
520	1711,8000	1806,8000		611	1730,0000	1825,000
521	1712,0000	1807,0000		612	1730,2000	1825,200
522	1712,0000	1807,0000		613	1730,4000	1825,400
523	1712,4000	1807,2000		614	1730,4000	1825,600
524	1712,4000	1807,4000		615	1730,8000	1825,800
525	1712,8000	1807,8000		616	1730,8000	1826,000
526	1713,0000	1808,0000		617	1731,0000	1826,200
527	1713,0000	1808,2000		662	1731,2000	1835,200
528	1713,4000	1808,4000		663	1740,2000	1835,400
529	1713,4000	1808,6000		664	1740,4000	
530	1713,8000	1808,8000		665	1740,8000	1835,600
531	1713,8000	1809,0000		666		1835,800
532	1714,0000	1809,0000		667	1741,0000	1836,000
533	1714,2000	1809,2000		668	1741,2000	1836,200
534	1714,4000	1809,4000		669	1741,4000	1836,400
535	1714,8000	1809,8000		670	1741,6000	1836,600
536	1715,0000	1810,0000			1741,8000	1836,800
537	1715,0000	1810,0000		671 672	1742,0000	1837,000
538	1715,2000	1810,4000			1742,2000	1837,200
539		·		673	1742,4000	1837,400
540	1715,6000	1810,6000		674	1742,6000	1837,600
541	1715,8000 1716,0000	1810,8000		675	1742,8000	1837,800
542	1716,0000	1811,0000		676	1743,0000	1838,000
543		1811,2000		677	1743,2000	1838,200
544	1716,4000	1811,4000		678	1743,4000	1838,400
545	1716,6000	1811,6000		679	1743,6000	1838,600
	1716,8000	1811,8000		680	1743,8000	1838,800
546	1717,0000	1812,0000		681	1744,0000	1839,000
547	1717,2000	1812,2000		682	1744,2000	1839,200
548	1717,4000	1812,4000		683	1744,4000	1839,400
549	1717,6000	1812,6000		684	1744,6000	1839,600
594	1726,6000	1821,6000		685	1744,8000	1839,800
595	1726,8000	1821,8000		686	1745,0000	1840,000
596	1727,0000	1822,0000		687	1745,2000	1840,200
597	1727,2000	1822,2000		688	1745,4000	1840,400
598	1727,4000	1822,4000		689	1745,6000	1840,600
599	1727,6000	1822,6000		690	1745,8000	1840,800
600 .	1727,8000	1822,8000		691	1746,0000	1841,000
601	1728,0000	1823,0000		692	1746,2000	1841,200
602	1728,2000	1823,2000		693	1746,4000	1841,400

## AUTSUI.XLS

		VORZUGSFR	EQUENZEN 2	LÂNDERFAL	<u> </u>	
			AUT/SUI			
KANAL	Unterband	Oberband		KANAL	Unterband	Oberband
MINAL	Onterband	Oberband		TOTAL	Cincibana	Oborbana
694	1746,6000	1841,6000		778	1763,4000	1858,4000
695	1746,8000	1841,8000		779	1763,6000	1858,6000
696	1747,0000	1842,0000		780	1763,8000	1858,8000
697	1747,2000	1842,2000		813	1770,4000	1865,4000
698	1747,4000	1842,4000		814	1770,6000	1865,6000
699	1747,6000	1842,6000		815	1770,8000	1865,8000
737	1755,2000	1850,2000		816	1771,0000	1866,0000
738	1755,4000	1850,4000		817	1771,2000	1866,2000
739	1755,6000	1850,6000		818	1771,4000	1866,4000
740	1755,8000	1850,8000		819	1771,6000	1866,6000
741	1756,0000	1851,0000		820	1771,8000	1866,8000
742	1756,2000	1851,2000		821	1772,0000	1867,0000
743	1756,4000	1851,4000		822	1772,2000	1867,2000
744	1756,6000	1851,6000		823	1772,4000	1867,4000
745	1756,8000	1851,8000		824	1772,6000	1867,6000
746	1757,0000	1852,0000		825	1772,8000	1867,8000
747	1757,2000	1852,2000		826	1773,0000	1868,0000
748	1757,4000	1852,4000		827	1773,2000	1868,2000
749	1757,6000	1852,6000		828	1773,4000	1868,4000
750	1757,8000	1852,8000		829	1773,6000	1868,6000
751	1758,0000	1853,0000		830	1773,8000	1868,8000
752	1758,2000	1853,2000		831	1774,0000	1869,0000
753	1758,4000	1853,4000		832	1774,2000	1869,2000
754	1758,6000	1853,6000		833	1774,4000	1869,4000
755	1758,8000	1853,8000		834	1774,6000	1869,6000
756	1759,0000	1854,0000		835	1774,8000	1869,8000
757	1759,2000	1854,2000		836	1775,0000	1870,0000
758	1759,4000	1854,4000		837	1775,2000	1870,2000
759	1759,6000	1854,6000		838	1775,4000	1870,4000
760	1759,8000	1854,8000		· 839	1775,6000	1870,6000
761	1760,0000	1855,0000		840	1775,8000	1870,8000
762	1760,2000	1855,2000		841	1776,0000	1871,0000
763	1760,4000	1855,4000		842	1776,2000	1871,2000
764	1760,6000	1855,6000		843	1776,4000	1871,4000
765	1760,8000	1855,8000		844	1776,6000	1871,6000
766	1761,0000	1856,0000		845	1776,8000	1871,8000
767	1761,2000	1856,2000		846	1777,0000	1872,0000
768	1761,4000	1856,4000		847	1777,2000	1872,2000
769	1761,4000	1856,6000		848	1777,2000	1872,4000
770	1761,8000	1856,8000		849	1777,4000	1872,6000
771	1761,8000	1857,0000		850	1777,8000	1872,8000
772	1762,0000	1857,0000		851	1778,0000	1873,0000
773	1762,2000	1857,4000		852	1778,2000	1873,2000
774	1762,4000	1857,6000		853	1778,4000	1873,4000
775		1857,8000		854	1778,6000	1873,4000
776	1762,8000 1763,0000	1858,0000		855	1778,8000	1873,8000
777	1763,0000	1858,0000		655	1770,0000	1073,0000

#### AUTD.XLS

		VORZUGSFR	EQUENZEN	2 LÄNDERFAI	L	
			AUT/D			
KANAL	Unterband	Oberband		KANAL	Unterband	Oberbano
512	17/1(6):2(0)6(6)	1805,2000		603	1728.4000	1823,400
513	1710,4000	1805,4000		604	1728,6000	1823,600
514	1710,6000	1805,6000		605	1728,8000	1823,800
515	1710,8000	1805,8000		606	1729,0000	1824,000
516	1711,0000	1806,0000		607	1729,2000	1824,200
517	1711,2000	1806,2000		608	1729,4000	1824,400
518	1711,4000	1806,4000		609	1729,6000	1824,600
519	1711,6000	1806,6000		610	1729,8000	1824,800
520	1711,8000	1806,8000		611	1730,0000	1825,000
521	1712,0000	1807,0000		662	1740,2000	1835,200
522	1712,2000	1807,2000		663	1740,4000	1835,400
523	1712,4000	1807,4000		664	1740,6000	1835,600
524	1712,6000	1807,6000		665	1740,8000	1835,800
525	1712,8000	1807,8000		666	1741,0000	1836,000
526	1713,0000	1808,0000		667	1741,2000	1836,200
527	1713,2000	1808,2000		668	1741,4000	1836,400
528	1713,4000	1808,4000		669	1741,6000	1836,600
529	1713,6000	1808,6000		670	1741,8000	1836,800
530	1713,8000	1808,8000		671	1742,0000	1837,000
531	1714,0000	1809,0000		672	1742,2000	1837,200
532	1714,2000	1809,2000		673	1742,4000	1837,400
533	1714,4000	1809,4000		674	1742,6000	1837,600
534	1714,6000	1809,6000		675	1742,8000	1837,800
535	1714,8000	1809,8000		676	1743,0000	1838,000
536	1715,0000	1810,0000		677	1743,2000	1838,200
575	1722,8000	1817,8000		678	1743,4000	1838,400
576	1723,0000	1818,0000		679	1743,6000	1838,600
577	1723,2000	1818,2000		680	1743,8000	1838,800
578	1723,4000	1818,4000		681	1744,0000	1839,000
579	1723,6000	1818,6000		682	1744,2000	1839,200
580	1723,8000	1818,8000		683	1744,4000	1839,400
581	1724,0000	1819,0000		684	1744,6000	1839,600
582	1724,2000	1819,2000		685	1744,8000	1839,800
583	1724,4000	1819,4000		686	1745,0000	1840,000
584	1724,6000	1819,6000		725	1752,8000	1847,800
585	1724,8000	1819,8000		726	1753,0000	1848,000
586	1725,0000	1820,0000		727	1753,2000	1848,200
587	1725,2000	1820,2000		728	1753,4000	1848,400
594	1726,6000	1821,6000		729	1753,6000	1848,600
595	1726,8000	1821,8000		730	1753,8000	1848,800
596	1727,0000	1822,0000		731	1754,0000	1849,000
597	1727,2000	1822,2000		732	1754,2000	1849,200
598	1727,4000	1822,4000		733	1754,4000	1849,400
599	1727,6000	1822,6000		734	1754,6000	1849,600
600	1727,8000	1822,8000		735	1754,8000	1849,800
601	1728,0000	1823,0000		736	1755,0000	1850,0000
602	1728,2000	1823,2000		737	1755,2000	1850,2000

#### AUTD.XLS

		VORZUGSFR		2 LÄNDERFA	LL	
			AUT/D			
KANAL	Unterband	Oberband		KANAL	Unterband	Oberband
707	4755 2000	1850,2000		822	1772,2000	1867,2000
737	1755,2000	1850,2000		823	1772,4000	1867,4000
738	1755,4000	1850,6000		824	1772,6000	1867,6000
739	1755,6000	1850,8000		825	1772,8000	1867,8000
740	1755,8000	1851,0000		826	1773,0000	1868,0000
741 742	1756,0000	1851,0000		827	1773,2000	1868,2000
742	1756,2000	1851,4000		828	1773,4000	1868,4000
	1756,4000 1756,6000	1851,6000		829	1773,6000	1868,6000
744		1851,8000		830	1773,8000	1868,8000
745	1756,8000			831	1774,0000	1869,000
746	1757,0000	1852,0000		832	1774,0000	1869,2000
747	1757,2000	1852,2000		833	1774,4000	1869,4000
748	1757,4000	1852,4000		834	1774,4000	1869,6000
749	1757,6000	1852,6000			1774,8000	1869,8000
750	1757,8000	1852,8000		835	1774,8000	1870,000
751	1758,0000	1853,0000		836		
752	1758,2000	1853,2000		862	1780,2000	1875,200
753	1758,4000	1853,4000		863	1780,4000	1875,400
754	1758,6000	1853,6000		864	1780,6000	1875,600
755	1758,8000	1853,8000		865	1780,8000	1875,800
756	1759,0000	1854,0000		866	1781,0000	1876,000
757	1759,2000	1854,2000		867	1781,2000	1876,200
758	1759,4000	1854,4000		868	1781,4000	1876,400
759	1759,6000	1854,6000		869	1781,6000	1876,600
760	1759,8000	1854,8000		870	1781,8000	1876,8000
761	1760,0000	1855,0000		871	1782,0000	1877,000
800	1767,8000	1862,8000		872	1782,2000	1877,200
801	1768,0000	1863,0000		873	1782,4000	1877,400
802	1768,2000	1863,2000		874	1782,6000	1877,600
803	1768,4000	1863,4000		875	1782,8000	1877,800
804	1768,6000	1863,6000		876	1783,0000	187/8 (2018)
805	1768,8000	1863,8000		877	1783,2000	1878,200
806	1769,0000	1864,0000		878	1783,4000	1878,400
807	1769,2000	1864,2000		879	1783,6000	1878,660
808	1769,4000	1864,4000		880	1783,8000	1878,800
809	1769,6000	1864,6000		881	1784,0000	1879.000
810	1769,8000	1864,8000		882	1784,2000	1879,200
811	1770,0000	1865,0000		883	1784,4000	1879,4000
812	1770,2000	1865,2000		884	1784,6000	1879,6000
813	1770,4000	1865,4000		885	1784,8000	1879,800
814	1770,6000	1865,6000				
815	1770,8000	1865,8000				
816	1771,0000	1866,0000				
817	1771,2000	1866,2000				
818	1771,4000	1866,4000				
819	1771,6000	1866,6000				
820	1771,8000	1866,8000				
821	1772,0000	1867,0000				

## **AUTHNG.XLS**

		VORZUGSFR	EQUENZEN 2	LANDERFAI		
			AUT/HNG			
KANAL	Unterband	Oberband		KANAL	Unterband	Oberband
F40	1710 0000	1005 0000			1700 1000	1000 1000
512	1710,2000	1805,2000		603	1728,4000	1823,4000
513	1710,4000	1805,4000		604	1728,6000	1823,6000
514	1710,6000	1805,6000		605	1728,8000	1823,8000
515	1710,8000	1805,8000		606	1729,0000	1824,0000
516	1711,0000	1806,0000		607	1729,2000	1824,2000
517	1711,2000	1806,2000		608	1729,4000	1824,4000
518	1711,4000	1806,4000		609	1729,6000	1824,6000
519	1711,6000	1806,6000		610	1729,8000	1824,8000
520	1711,8000	1806,8000		611	1730,0000	1825,0000
521	1712,0000	1807,0000		612	1730,2000	1825,2000
522	1712,2000	1807,2000		613	1730,4000	1825,4000
523	1712,4000	1807,4000		614	1730,6000	1825,6000
524	1712,6000	1807,6000		615	1730,8000	1825,8000
525	1712,8000	1807,8000		616	1731,0000	1826,0000
526	1713,0000	1808,0000		617	1731,2000	1826,2000
527	1713,2000	1808,2000		662	1740,2000	1835,2000
528	1713,4000	1808,4000		663	1740,4000	1835,4000
529	1713,6000	1808,6000		664	1740,6000	1835,6000
530	1713,8000	1808,8000		665	1740,8000	1835,8000
531	1714,0000	1809,0000		666	1741,0000	1836,0000
532	1714,2000	1809,2000		667	1741,2000	1836,2000
533	1714,4000	1809,4000		668	1741,4000	1836,4000
534	1714,6000	1809,6000		669	1741,6000	1836,6000
535	1714,8000	1809,8000		670	1741,8000	1836,8000
536	1715,0000	1810,0000		671	1742,0000	1837,0000
537	1715,2000	1810,2000		672	1742,2000	1837,2000
538	1715,4000	1810,4000		673	1742,4000	1837,4000
539	1715,6000	1810,6000		674	1742,6000	1837,6000
540	1715,8000	1810,8000		675	1742,8000	1837,8000
541	1716,0000	1811,0000		676	1743,0000	1838,0000
542	1716,2000	1811,2000		677	1743,2000	1838,2000
543	1716,4000	1811,4000		678	1743,4000	1838,4000
544	1716,6000	1811,6000		679	1743,6000	1838,6000
545	1716,8000	1811,8000		680	1743,8000	1838,8000
		1812,0000		681	1744,0000	1839,0000
546	1717,0000	<del></del>		682	1744,2000	1839,2000
547	1717,2000	1812,2000		683	1744,4000	1839,4000
548	1717,4000	1812,4000		684	1744,4000	1839,6000
549	1717,6000	1812,6000			1744,8000	1839,8000
594	1726,6000	1821,6000		685		<u> </u>
595	1726,8000	1821,8000		686	1745,0000	1840,0000
596	1727,0000	1822,0000		687	1745,2000	1840,2000
597	1727,2000	1822,2000		688	1745,4000	1840,4000
598	1727,4000	1822,4000		689	1745,6000	1840,6000
599	1727,6000	1822,6000		690	1745,8000	1840,8000
600	1727,8000	1822,8000		691	1746,0000	1841,0000
601	1728,0000	1823,0000		692	1746,2000	1841,2000
602	1728,2000	1823,2000		693	1746,4000	1841,4000

## **AUTHNG.XLS**

		VORZUGSFR	EQUENZEN 2	LÂNDERFAL	L	
			AUT/HNG			
KANAL	Unterband	Oberband		KANAL	Unterband	Oberband
694	1746,6000	1841,6000		778	1763,4000	1858,4000
695	1746,8000	1841,8000		779	1763,6000	1858,6000
696	1746,8000			780	1763,8000	1858,8000
697	1747,0000	1842,0000 1842,2000		813	1770,4000	1865,4000
698	1747,2000	1842,4000		814	1770,6000	1865,6000
699	1747,4000	1842,6000		815	1770,8000	1865,8000
737	1755,2000	1850,2000		816	1771,0000	1866,0000
738	1755,4000	1850,4000		817	1771,2000	1866,2000
739	1755,4000	1850,6000		818	1771,4000	1866,4000
740	1755,8000	1850,8000		819	1771,6000	1866,6000
741	1755,8000	1851,0000		820	1771,8000	1866,8000
741				821	1771,8000	1867,0000
	1756,2000	1851,2000		822	1772,0000	1867,2000
743	1756,4000	1851,4000		823	1772,2000	1867,2000
744	1756,6000	1851,6000		824	1772,4000	1867,4000
745	1756,8000	1851,8000				1867,8000
746	1757,0000	1852,0000		825	1772,8000	
747	1757,2000	1852,2000		826	1773,0000	1868,0000
748	1757,4000	1852,4000		827	1773,2000	1868,2000
749	1757,6000	1852,6000		828	1773,4000	1868,4000
750	1757,8000	1852,8000		829	1773,6000	1868,6000
751	1758,0000	1853,0000		830	1773,8000	1868,8000
752	1758,2000	1853,2000		831	1774,0000	1869,0000
753	1758,4000	1853,4000		832	1774,2000	1869,2000
754	1758,6000	1853,6000		833	1774,4000	1869,4000
755	1758,8000	1853,8000		834	1774,6000	1869,6000
756	1759,0000	1854,0000		835	1774,8000	1869,8000
757	1759,2000	1854,2000		836	1775,0000	1870,0000
758	1759,4000	1854,4000		837	1775,2000	1870,2000
759	1759,6000	1854,6000		838	1775,4000	1870,4000
760	1759,8000	1854,8000		839	1775,6000	1870,6000
761	1760,0000	1855,0000		840	1775,8000	1870,8000
762	1760,2000	1855,2000		841	1776,0000	1871,0000
763	1760,4000	1855,4000		842	1776,2000	1871,2000
764	1760,6000	1855,6000		843	1776,4000	1871,4000
765	1760,8000	1855,8000		844	1776,6000	1871,6000
766	1761,0000	1856,0000		845	1776,8000	1871,8000
767	1761,2000	1856,2000		846	1777,0000	1872,0000
768	1761,4000	1856,4000		847	1777,2000	1872,2000
769	1761,6000	1856,6000		848	1777,4000	1872,4000
770	1761,8000	1856,8000		849	1777,6000	1872,6000
771	1762,0000	1857,0000		850	1777,8000	1872,8000
772	1762,2000	1857,2000		851	1778,0000	1873,0000
773	1762,4000	1857,4000		852	1778,2000	1873,2000
774	1762,6000	1857,6000		853	1778,4000	1873,4000
775	1762,8000	1857,8000		854	1778,6000	1873,6000
776	1763,0000	1858,0000		855	1778,8000	1873,8000
777	1763,2000	1858,2000				

## AUTSVK.XLS

		101120001 N	EQUENZEN 2 AUT/SVK	LANDEIU AL	<del></del>	
					-	
KANAL	Unterband	Oberband		KANAL	Unterband	Oberban
512	1710,2000	1805,2000		603	1728,4000	1823,400
513	1710,4000	1805,4000		604	1728,6000	1823,600
514	1710,6000	1805,6000		605	1728,8000	1823,800
515	1710,8000	1805,8000		606	1729,0000	1824,000
516	1711,0000	1806,0000		607	1729,2000	1824,200
517	1711,2000	1806,2000		608	1729,4000	1824,400
518	1711,4000	1806,4000		609	1729,6000	1824,600
519	1711,6000	1806,6000		610	1729,8000	1824,800
520	1711,8000	1806,8000		611	1730,0000	1825,000
521	1712,0000	1807,0000		662	1740,2000	1835,200
522	1712,2000	1807,2000		663	1740,4000	1835,400
523	1712,4000	1807,4000		664	1740,6000	1835,600
524	1712,6000	1807,6000		665	1740,8000	1835,800
525	1712,8000	1807,8000	-	666	1741,0000	1836,000
526	1713,0000	1808,0000		667	1741,2000	1836,200
527	1713,2000	1808,2000	-	668	1741,4000	1836,400
528	1713,4000	1808,4000		669	1741,6000	1836,600
529	1713,6000	1808,6000		670	1741,8000	1836,800
530	1713,8000	1808,8000		671	1742,0000	1837,000
531	1714,0000	1809,0000		672	1742,2000	1837,200
532	1714,2000	1809,2000		673	1742,4000	1837,400
533	1714,4000	1809,4000		674	1742,6000	1837,600
534	1714,6000	1809,6000		675	1742,8000	1837,800
535	1714,8000	1809,8000		676	1743,0000	1838,000
536	1715,0000	1810,0000		677	1743,2000	1838,200
575	1722,8000	1817,8000		678	1743,4000	1838,400
576	1723,0000	1818,0000		679	1743,6000	1838,600
577	1723,2000	1818,2000		680	1743,8000	1838,800
578	1723,4000	1818,4000		681	1744,0000	1839,000
579	1723,6000	1818,6000		· 682	1744,2000	1839,200
580	1723,8000	1818,8000		683	1744,4000	1839,400
581	1724,0000	1819,0000		684	1744,6000	1839,600
582	1724,2000	1819,2000		685	1744,8000	1839,800
583	1724,2000	1819,4000		686	1745,0000	1840,000
584	1724,4000	1819,6000		725	1752,8000	1847,800
585	1724,8000	1819,8000		726	1753,0000	1848,000
	-	1820,0000		727	1753,2000	1848,200
586	1725,0000			728	1753,4000	1848,400
587	1725,2000	1820,2000		729	1753,4000	1848,600
594	1726,6000	1821,6000			1753,8000	1848,800
595	1726,8000	1821,8000		730	1753,8000	1849,000
596	1727,0000	1822,0000		731 732	1754,0000	1849,000
597	1727,2000	1822,2000				1849,400
598	1727,4000	1822,4000		733	1754,4000	1849,600
599	1727,6000	1822,6000		734	1754,6000	
600	1727,8000	1822,8000		735	1754,8000	1849,800 1850,000
601	1728,0000 1728,2000	1823,0000 1823,2000		736 737	1755,0000 1755,2000	1850,000

#### **AUTSVK.XLS**

		VOHZUGSFR	EQUENZEN 2	LANDERFA	<u>_L</u>	
	· —		AUT/SVK			
KANAL	Unterband	Oberband		KANAL	Unterband	Oberbano
					0000000	
737	1755,2000	1850,2000		822	1772,2000	1867,2000
738	1755,4000	1850,4000		823	1772,4000	1867,4000
739	1755,6000	1850,6000		824	1772,6000	1867,6000
740	1755,8000	1850,8000		825	1772,8000	1867,8000
741	1756,0000	1851,0000		826	1773,0000	1868,0000
742	1756,2000	1851,2000		827	1773,2000	1868,2000
743	1756,4000	1851,4000		828	1773,4000	1868,400
744	1756,6000	1851,6000		829	1773,6000	1868,600
745	1756,8000	1851,8000		830	1773,8000	1868,8000
746	1757,0000	1852,0000		831	1774,0000	1869,0000
747	1757,2000	1852,2000		832	1774,2000	1869,2000
748	1757,4000	1852,4000		833	1774,4000	1869,400
749	1757,6000	1852,6000		834	1774,6000	1869,600
750	1757,8000	1852,8000		835	1774,8000	1869,800
751	1758,0000	1853,0000		836	1775,0000	1870,000
752	1758,2000	1853,2000		862	1780,2000	1875,200
753	1758,4000	1853,4000		863	1780,4000	1875,4000
754	1758,6000	1853,6000		864	1780,6000	1875,600
755	1758,8000	1853,8000		865	1780,8000	1875,800
756	1759,0000	1854,0000		866	1781,0000	1876,000
757	1759,2000	1854,2000		867	1781,2000	1876,200
758	1759,4000	1854,4000		868	1781,4000	1876,400
759	1759,6000	1854,6000		869	1781,6000	1876,6000
760	1759,8000	1854,8000		870	1781,8000	1876,800
761	1760,0000	1855,0000		871	1782,0000	1877,000
800	1767,8000	1862,8000		872	1782,2000	1877,200
801	1768,0000	1863,0000		873	1782,4000	1877,400
802	1768,2000	1863,2000		874	1782,6000	1877,600
803	1768,4000	1863,4000		875	1782,8000	1877,800
804	1768,6000	1863,6000		· 876	1783,0000	1878,000
805	1768,8000	1863,8000		877	1783,2000	1878,200
806	1769,0000	1864,0000		878	1783,4000	1878,400
807	1769,2000	1864,2000		879	1783,6000	1878,600
808	1769,4000	1864,4000		880	1783,8000	1878,800
809	1769,6000	1864,6000		881	1784,0000	1879,000
810	1769,8000	1864,8000		882	1784,2000	1879,200
811	1770,0000	1865,0000		883	1784,4000	1879,400
812	1770,2000	1865,2000		884	1784,6000	1879,600
813	1770,4000	1865,4000		885	1784,8000	1879,800
814	1770,6000	1865,6000			,	
815	1770,8000	1865,8000				
816	1771,0000	1866,0000				
817	1771,2000	1866,2000				
818	1771,4000	1866,4000			1	
819	1771,6000	1866,6000				
820	1771,8000	1866,8000			•	<u></u>
821	1772,0000	1867,0000				

5K

## **AUTSUID.XLS**

		VUHZUGSFR	EQUENZEN 3	LANDERFAL	<u>-</u>	
	·		AUT/SUI/D			
KANAL	Unterband	Oberband		KANAL	Unterband	Oberband
540	4740,0000	4005 0000		000	4744 4000	1000 1000
512	1710,2000	1805,2000		668	1741,4000	1836,4000
513	1710,4000	1805,4000		669	1741,6000	1836,6000
514	1710,6000	1805,6000		670	1741,8000	1836,8000
515	1710,8000	1805,8000		671	1742,0000	1837,0000
516	1711,0000	1806,0000		672	1742,2000	1837,2000
517	1711,2000	1806,2000		673	1742,4000	1837,4000
518	1711,4000	1806,4000		674	1742,6000	1837,6000
519	1711,6000	1806,6000		675	1742,8000	1837,800
520	1711,8000	1806,8000		676	1743,0000	1838,0000
521	1712,0000	1807,0000		677	1743,2000	1838,2000
522	1712,2000	1807,2000		678	1743,4000	1838,4000
523	1712,4000	1807,4000		679	1743,6000	1838,6000
524	1712,6000	1807,6000		680	1743,8000	1838,8000
525	1712,8000	1807,8000		729	1753,6000	1848,6000
526	1713,0000	1808,0000		730	1753,8000	1848,8000
527	1713,2000	1808,2000		731	1754,0000	1849,0000
528	1713,4000	1808,4000	_	732	1754,2000	1849,2000
529	1713,6000	1808,6000		733	1754,4000	1849,4000
530	1713,8000	1808,8000		734	1754,6000	1849,6000
594	1726,6000	1821,6000		735	1754,8000	1849,8000
595	1726,8000	1821,8000		736	1755,0000	1850,0000
596	1727,0000	1822,0000		737	1755,2000	1850,2000
597	1727,2000	1822,2000		738	1755,4000	1850,4000
598	1727,4000	1822,4000		739	1755,6000	1850,6000
599	1727,6000	1822,6000		740	1755,8000	1850,8000
600	1727,8000	1822,8000		741	1756,0000	1851,0000
601	1728,0000	1823,0000		742	1756,2000	1851,2000
602	1728,2000	1823,2000		743	1756,4000	1851,400
603	1728,4000	1823,4000		744	1756,6000	1851,6000
604	1728,6000	1823,6000		· 745	1756,8000	1851,800
605	1728,8000	1823,8000		746	1757,0000	1852,0000
606	1729,0000	1824,0000		747	1757,2000	1852,2000
607	1729,2000	1824,2000		748	1757,4000	1852,400
608	1729,4000	1824,4000		749	1757,6000	1852,6000
609	1729,6000	1824,6000		750	1757,8000	1852,8000
610	1729,8000	1824,8000		805 /	1768,8000	1863,800
611	1730,0000	1825,0000		806	1769,0000	1864,000
612	1730,2000	1825,2000		807	1769,2000	1864,200
613	1730,2000	1825,4000		808	1769,4000	1864,400
614	1730,4000	1825,6000		809	1769,6000	1864,600
615		200 100 100 100 100 100 100 100 100 100		810	1769,8000	1864,8000
	1730,8000	1825,8000		811		1865,000
662	1740,2000	1835,2000			1770,0000	
663	1740,4000	1835,4000		812	1770,2000	1865,200
664	1740,6000	1835,6000		813	1770,4000	1865,400
665	1740,8000	1835,8000		814	1770,6000	1865,600
666	1741,0000	1836,0000		815	1770,8000	1865,8000
667	1741,2000	1836,2000		816	1771,0000	1866,000

## **AUTSUID.XLS**

		VORZUGSFR	EQUENZEN 3	LÂNDERFAL	.L	
			AUT/SUI/D			
KANAL	Unterband	Oberband		KANAL	Unterband	Oberband
	7					
817	1771,2000	1866,2000		835	1774,8000	1869,8000
818	1771,4000	1866,4000		836	1775,0000	1870,0000
819	1771,6000	1866,6000		837	1775,2000	1870,2000
820	1771,8000	1866,8000		838	1775,4000	1870,4000
821	1772,0000	1867,0000		839	1775,6000	1870,6000
822	1772,2000	1867,2000		840	1775,8000	1870,8000
823	1772,4000	1867,4000		841	1776,0000	1871,0000
824	1772,6000	1867,6000		842	1776,2000	1871,2000
825	1772,8000	1867,8000		843	1776,4000	1871,4000
826	1773,0000	1868,0000		844	1776,6000	1871,6000
827	1773,2000	1868,2000		845	1776,8000	1871,8000
828	1773,4000	1868,4000				
829	1773,6000	1868,6000				
830	1773,8000	1868,8000				
831	1774,0000	1869,0000				
832	1774,2000	1869,2000				
833	1774,4000	1869,4000	_			
834	1774,6000	1869,6000				

## AUTCZSVK.XLS

		VORZUGSFREQUEN AUT/CZ			
KANAL	Unterband	Oberband	KANAL	Unterband	Oberban
512	1710,2000	1805,2000	668	1741,4000	1836,400
513	1710,4000	1805,4000	669	1741,6000	1836,600
514	1710,6000	1805,6000	670	1741,8000	1836,800
515	1710,8000	1805,8000	671	1742,0000	1837,000
516	1711,0000	1806,0000	672	1742,2000	1837,200
517	1711,2000	1806,2000	673	1742,4000	1837,400
518	1711,4000	1806,4000	674	1742,6000	1837,600
519	1711,6000	1806,6000	675	1742,8000	1837,800
520	1711,8000	1806,8000	676	1743,0000	1838,000
521	1712,0000	1807,0000	677	1743,2000	1838,200
522	1712,2000	1807,2000	678	1743,4000	1838,400
523	1712,4000	1807,4000	679	1743,6000	1838,600
524	1712,6000	1807,6000	680	1743,8000	1838,800
525	1712,8000	1807,8000	729	1753,6000	1848,600
526	1713,0000	1808,0000	730	1753,8000	1848,800
527	1713,2000	1808,2000	731	1754,0000	1849,000
528	1713,4000	1808,4000	732	1754,2000	1849,200
529	1713,6000	1808,6000	733	1754,4000	1849,400
530	1713,8000	1808,8000	734	1754,6000	1849,600
594	1726,6000	1821,6000	735	1754,8000	1849,800
595	1726,8000	1821,8000	736	1755,0000	1850,000
596	1727,0000	1822,0000	737	1755,2000	1850,200
597	1727,2000	1822,2000	738	1755,4000	1850,400
598	1727,4000	1822,4000	739	1755,6000	1850,600
599	1727,6000	1822,6000	740	1755,8000	1850,800
600	1727,8000	1822,8000	741	1756,0000	1851,000
601	1728,0000	1823,0000	742	1756,2000	1851,200
602	1728,2000	1823,2000	743	1756,4000	1851,400
603	1728,4000	1823,4000	744	1756,6000	1851,600
604	1728,6000	1823,6000	745	1756,8000	1851,800
605	1728,8000	1823,8000	746	1757,0000	1852,000
606	1729,0000	1824,0000	747	1757,2000	1852,200
607	1729,2000	1824,2000	748	1757,4000	1852,400
608	1729,4000	1824,4000	749	1757,6000	1852,600
609	1729,6000	1824,6000	750	1757,8000	1852,800
610	1729,8000	1824,8000	805	1768,8000	1863,800
611	1730,0000	1825,0000	806	1769,0000	1864,000
612	1730,2000	1825,2000	807	1769,2000	1864,200
613	1730,4000	1825,4000	808	1769,4000	1864,400
614	1730,6000	1825,6000	809	1769,6000	1864,600
615	1730,8000	1825,8000	810	1769,8000	1864,800
662	1740,2000	1835,2000	811	1770,0000	1865,000
663	1740,2000	1835,4000	812	1770,2000	1865,200
664	1740,4000	1835,6000	813	1770,4000	1865,400
665	1740,8000	1835,8000	814	1770,6000	1865,600
666	1740,8000	1836,0000	815	1770,8000	1865,800
667	1741,0000	1836,2000	816	1771,0000	1866,000

#### **AUTCZSVK.XLS**

		VORZUGSFREQUEN		<u>.L</u>	
		AUT/CZ	E/SVK		
KANAL	Unterband	Oberband	KANAL	Unterband	Oberbano
817	1771,2000	1866,2000	835	1774,8000	1869,8000
818	1771,4000	1866,4000	836	1775,0000	1870,000
819	1771,6000	1866,6000	837	1775,2000	1870,200
820	1771,8000	1866,8000	838	1775,4000	1870,400
821	1772,0000	1867,0000	839	1775,6000	1870,600
822	1772,2000	1867,2000	840	1775,8000	1870,800
823	1772,4000	1867,4000	841	1776,0000	1871,000
824	1772,6000	1867,6000	842	1776,2000	1871,200
825	1772,8000	1867,8000	843	1776,4000	1871,400
826	1773,0000	1868,0000	844	1776,6000	1871,600
827	1773,2000	1868,2000	845	1776,8000	1871,800
828	1773,4000	1868,4000			
829	1773,6000	1868,6000			
830	1773,8000	1868,8000			
831	1774,0000	1869,0000			
832	1774,2000	1869,2000			
833	1774,4000	1869,4000			
834	1774,6000	1869,6000			_

#### AUTDCZE.XLS

VORZUGSFREQUENZEN 3 LÄNDERFALL						
			AUT/D/CZE			
KANAL	Unterband	Oberband	, -	KANAL	Unterband	Oberband
512	1710.2000	1805.2000		668	1741,4000	1836,4000
513	1710,4000	1805,4000		669	1741,6000	1836,6000
514	1710,6000	1805,6000		670	1741,8000	1836,8000
515	1710,8000	1805,8000		671	1742,0000	1837,0000
516	1711,0000	1806,0000		672	1742,2000	1837,2000
517	1711,2000	1806,2000		673	1742,4000	1837,4000
518	1711,4000	1806,4000		674	1742,6000	1837,6000
519	1711,6000	1806,6000		675	1742,8000	1837,8000
520	1711,8000	1806,8000		676	1743,0000	1838,0000
521	1712,0000	1807,0000		677	1743,2000	1838,2000
522	1712,2000	1807,2000		678	1743,4000	1838,4000
523	1712,4000	1807,4000		679	1743,6000	1838,6000
524	1712,6000	1807,6000		680	1743,8000	1838,8000
525	1712,8000	1807,8000		729	1753,6000	1848,6000
526	1713,0000	1808,0000		730	1753,8000	1848,8000
527	1713,2000	1808,2000		731	1754,0000	1849,0000
528	1713,4000	1808,4000		732	1754,2000	1849,2000
529	1713,6000	1808,6000		733	1754,4000	1849,4000
530	1713,8000	1808,8000		734	1754,6000	1849,6000
594	1728,6000	1821,6000		735	1754,8000	1849,8000
595	1726,8000	1821,8000		736	1755,0000	1850,0000
596	1727,0000	1822,0000		737	1755,2000	1850,2000
597	1727,2000	1822,2000		738	1755,4000	1850,4000
598	1727,4000	1822,4000		739	1755,6000	1850,6000
599	1727,6000	1822,6000		740	1755,8000	1850,8000
600	1727,8000	1822,8000		741	1756,0000	1851,0000
601	1728,0000	1823,0000		742	1756,2000	1851,2000
602	1728,2000	1823,2000		743	1758,4000	1851,4000
603	1728,4000	1823,4000		744	1756,6000	1851,6000
604	1728,6000	1823,6000		745	1756,8000	1851,8000
605	1728,8000	1823,8000		746	1757,0000	1852,0000
606	1729,0000	1824,0000		747	1757,2000	1852,2000
607	1729,2000	1824,2000		748	1757,4000	1852,4000
608	1729,4000	1824,4000		749	1757,6000	1852,6000
609	1729,6000	1824,6000		750	1757,8000	1852,8000
610	1729,8000	1824,8000		805	1768,8000	1863,8000
611	1730,0000	1825,0000		806	1769,0000	1864,0000
612	1730,2000	1825,2000		807	1769,2000	1864,2000
613	1730,4000	1825,4000		808	1769,4000	1864,4000
614	1730,6000	1825,6000		809	1769,6000	1864,6000
615	1730,8000	1825,8000		810	1769,8000	1864,8000
662	1740,2000	1835,2000		811	1770,0000	1865,0000
663	1740,4000	1835,4000		812	1770,2000	1865,2000
664	1740,6000	1835,6000		813	1770,4000	1865,4000
665	1740,8000	1835,8000		814	1770,6000	1865,6000
666	1741,0000	1836,0000		815	1770,8000	1865,8000
667	1741,2000	1836,2000		816	1771,0000	1866,0000

#### **AUTDCZE.XLS**

		VORZUGSF	REQUENZEN 3	LÄNDERFA	LL	
			AUT/D/CZE			
KANAL	Unterband	Oberband		KANAL	Unterband	Oberband
817	1771,2000	1866,2000		835	1774,8000	1869,8000
818	1771,4000	1866,4000		836	1775,0000	1870,0000
819	1771,6000	1866,6000		837	1775,2000	1870.2000
820	1771,8000	1866,8000		838	1775,4000	1870,4000
821	1772,0000	1867,0000		839	1775,6000	1870,6000
822	1772,2000	1867,2000		840	1775,8000	1870,8000
823	1772,4000	1867,4000		841	1776,0000	1871,0000
824	1772,6000	1867,6000		842	1776,2000	1871,2000
825	1772,8000	1867,8000		843	1776,4000	1871,4000
826	1773,0000	1868,0000		844	1776,6000	1871,6000
827	1773,2000	1868,2000		845	1776,8000	1871,8000
828	1773,4000	1868,4000				
829	1773,6000	1868,6000				
830	1773,8000	1868,8000				
831	1774,0000	1869,0000				
832	1774,2000	1869,2000				
833	1774,4000	1869,4000				
834	1774 6000	1869,6000				

#### **AUTHNSVN.XLS**

		VORZUGSFF	REQUENZEN 3 LÄNDER	FALL	
			AUT/HNG/SVN		
KANAL	Unterband	Oberband	KANAI	L Unterband	Oberband
512	1710,2000	1805,2000	668	1741,4000	1836,4000
513	1710,4000	1805,4000	669	1741,6000	1836,6000
514	1710,6000	1805,6000	670	1741,8000	1836,8000
515	1710,8000	1805,8000	671	1742,0000	1837,0000
516	1711,0000	1806,0000	672	1742,2000	1837,2000
517	1711,2000	1806,2000	673	1742,4000	1837,4000
518	1711,4000	1806,4000	674	1742,6000	1837,6000
519	1711,6000	1806,6000	675	1742,8000	1837,8000
520	1711,8000	1806,8000	676	1743,0000	1838,0000
521	1712,0000	1807,0000	677	1743,2000	1838,2000
522	1712,2000	1807,2000	678	1743,4000	1838,4000
523	1712,4000	1807,4000	679	1743,6000	1838,6000
524	1712,6000	1807,6000	680	1743,8000	1838,8000
525	1712,8000	1807,8000	729	1753,6000	1848,6000
526	1713,0000	1808,0000	730	1753,8000	1848,8000
527	1713,2000	1808,2000	731	1754,0000	1849,0000
528	1713,4000	1808,4000	732	1754,2000	1849,2000
529	1713,6000	1808,6000	733	1754,4000	1849,4000
530	1713,8000	1808,8000	734	1754,6000	1849,6000
594	1726,6000	1821,6000	735	1754,8000	1849,8000
595	1726,8000	1821,8000	736	1755,0000	1850,0000
596	1727,0000	1822,0000	737	1755,2000	1850,2000
597	1727,2000	1822,2000	738	1755,4000	1850,4000
598	1727,4000	1822,4000	739	1755,6000	1850,6000
599	1727,6000	1822,6000	740	1755,8000	1850,8000
600	1727,8000	1822,8000	741	1756,0000	1851,0000
601	1728,0000	1823,0000	742	1756,2000	1851,2000
602	1728,2000	1823,2000	743	1756,4000	1851,4000
603	1728,4000	1823,4000	744	1756,6000	1851,6000
604	1728,6000	1823,6000	· 745	1756,8000	1851,8000
605	1728,8000	1823,8000	746	1757,0000	1852,0000
606	1729,0000	1824,0000	747	1757,2000	1852,2000
607	1729,2000	1824,2000	748	1757,4000	1852,4000
608	1729,4000	1824,4000	749	1757,6000	1852,6000
609	1729,6000	1824,6000	750	1757,8000	1852,8000
610	1729,8000	1824,8000	805	1768,8000	1863,8000
611	1730,0000	1825,0000	806	1769,0000	1864,0000
612	1730,2000	1825,2000	807	1769,2000	1864,2000
613	1730,4000	1825,4000	808	1769,4000	1864,4000
614	1730,6000	1825,6000	809	1769,6000	1864,6000
615	1730,8000	1825,8000	810	1769,8000	1864,8000
662	1740,2000	1835,2000	811	1770,0000	1865,0000
663	1740,4000	1835,4000	812	1770,2000	1865,2000
664	1740,6000	1835,6000	813	1770,4000	1865,4000
665	1740,8000	1835,8000	814	1770,6000	1865,6000
666	1741,0000	1836,0000	815	1770,8000	1865,8000
667	1741,2000	1836,2000	816	1771,0000	1866,0000

#### **AUTHNSVN.XLS**

		VORZUGSFR	<b>EQUENZEN 3</b>	LÄNDERFAL	L	
		. 1	AUT/HNG/SVN			
KANAL	Unterband	Oberband		KANAL	Unterband	Oberband
817	1771,2000	1866,2000		835	1774,8000	1869,8000
818	1771,4000	1866,4000		836	1775,0000	1870,0000
819	1771,6000	1866,6000		837	1775,2000	1870,2000
820	1771,8000	1866,8000		838	1775,4000	1870,4000
821	1772,0000	1867,0000		839	1775,6000	1870,6000
822	1772,2000	1867,2000		840	1775,8000	1870,8000
823	1772,4000	1867,4000		841	1776,0000	1871,0000
824	1772,6000	1867,6000		842	1776,2000	1871,2000
825	1772,8000	1867,8000		843	1776,4000	1871,4000
826	1773,0000	1868,0000		844	1776,6000	1871,6000
827	1773,2000	1868,2000		845	1776,8000	1871,8000
828	1773,4000	1868,4000				
829	1773,6000	1868,6000				
830	1773,8000	1868,8000				
831	1774,0000	1869,0000				
832	1774,2000	1869,2000				
833	1774,4000	1869,4000				
834	1774,6000	1869,6000				

## **AUTSVNI.XLS**

		VORZUGSFR	REQUENZEN 3	LÂNDERFAI	L	
	*		AUT/SVN/I			
KANAL	Unterband	Oberband		KANAL	Unterband	Oberband
512	1710,2000	1805,2000		668	1741,4000	1836,4000
513	1710,2000	1805,2000		669	1741,4000	1836,6000
514				670		
515	1710,6000	1805,6000		671	1741,8000	1836,8000
516	1710,8000	1805,8000			1742,0000	1837,0000
	1711,0000	1806,0000		672	1742,2000	1837,2000
517	1711,2000	1806,2000		673	1742,4000	1837,4000
518	1711,4000	1806,4000		674	1742,6000	1837,6000
519	1711,6000	1806,6000		675	1742,8000	1837,8000
520	1711,8000	1806,8000		676	1743,0000	1838,0000
521	1712,0000	1807,0000		677	1743,2000	1838,2000
522	1712,2000	1807,2000		678	1743,4000	1838,4000
523	1712,4000	1807,4000		679	1743,6000	1838,6000
524	1712,6000	1807,6000	-	680	1743,8000	1838,8000
525	1712,8000	1807,8000		729	1753,6000	1848,6000
526	1713,0000	1808,0000		730	1753,8000	1848,8000
527	1713,2000	1808,2000		731	1754,0000	1849,0000
528	1713,4000	1808,4000		732	1754,2000	1849,2000
529	1713,6000	1808,6000		733	1754,4000	1849,4000
530	1713,8000	1808,8000		734	1754,6000	1849,6000
594	1726,6000	1821,6000		735	1754,8000	1849,8000
595	1726,8000	1821,8000		736	1755,0000	1850,0000
596	1727,0000	1822,0000		737	1755,2000	1850,2000
597	1727,2000	1822,2000		738	1755,4000	1850,4000
598	1727,4000	1822,4000		739	1755,6000	1850,6000
599	1727,6000	1822,6000		740	1755,8000	1850,8000
600	1727,8000	1822,8000		741	1756,0000	1851,0000
601	1728,0000	1823,0000		742	1756,2000	1851,2000
602	1728,2000	1823,2000		743	1756,4000	1851,4000
603	1728,4000	1823,4000		744	1756,6000	1851,6000
604	1728,6000	1823,6000		. 745	1756,8000	1851,8000
605	1728,8000	1823,8000	_	746	1757,0000	1852,0000
606	1729,0000	1824,0000		747	1757,2000	1852,2000
607	1729,2000	1824,2000		748	1757,4000	1852,4000
608	1729,4000	1824,4000		749	1757,6000	1852,6000
609	1729,6000	1824,6000		750	1757,8000	1852,8000
610	1729,8000	1824,8000		805	1768,8000	1863,8000
611	1730,0000	1825,0000		806	1769,0000	1864,0000
612	1730,2000	1825,2000		807	1769,2000	1864,2000
613	1730,4000	1825,4000		808	1769,4000	1864,4000
614	1730,6000	1825,6000		809	1769,6000	1864,6000
615	1730,8000	1825,8000		810	1769,8000	1864,8000
662	1740,2000	1835,2000		811	1770,0000	1865,0000
663	1740,4000	1835,4000		812	1770,2000	1865,2000
664	1740,6000	1835,6000		813	1770,4000	1865,4000
665	1740,8000	1835,8000		814	1770,6000	1865,6000
666	1741,0000	1836,0000		815	1770,8000	1865,8000
667	1741,2000	1836,2000		816	1771,0000	1866,0000

#### **AUTSVNI.XLS**

		VORZUGSFF	REQUENZEN 3	LANDERFAL	L	
			AUT/SVN/I			
KANAL	Unterband	Oberband		KANAL	Unterband	Oberband
817	1771,2000	1866,2000		835	1774,8000	1869,8000
818	1771,4000	1866,4000		836	1775,0000	1870,0000
819	1771,6000	1866,6000		837	1775,2000	1870,2000
820	1771,8000	1866,8000		838	1775,4000	1870,4000
821	1772,0000	1867,0000		839	1775,6000	1870,6000
822	1772,2000	1867,2000		840	1775,8000	1870,8000
823	1772,4000	1867,4000		841	1776,0000	1871,0000
824	1772,6000	1867,6000		842	1776,2000	1871,2000
825	1772,8000	1867,8000		843	1776,4000	1871,4000
826	1773,0000	1868,0000		844	1776,6000	1871,6000
827	1773,2000	1868,2000		845	1776,8000	1871,8000
828	1773,4000	1868,4000				
829	1773,6000	1868,6000				
830	1773,8000	1868,8000				
831	1774,0000	1869,0000				
832	1774,2000	1869,2000				
833	1774,4000	1869,4000				
834	1774,6000	1869,6000				

## **AUTISUI.XLS**

		VORZUGSFF	REQUENZEN 3	LÄNDERFA	LL	
			AUT/I/SUI			
1400101				1245141		
KANAL	Unterband	Oberband		KANAL	Unterband	Oberband
512	1710,2000	1805,2000		668	1741,4000	1838,4000
513	1710,4000	1805,4000		669	1741,6000	1836,6000
514	1710,6000	1805,6000		670	1741,8000	1836,8000
515	1710,8000	1805,8000		671	1742,0000	1837,0000
516	1711,0000	1806,0000		672	1742,2000	1837,2000
517	1711,2000	1806,2000		673	1742,4000	1837,4000
518	1711,4000	1806,4000		674	1742,6000	1837,6000
519	1711,6000	1806,6000		675	1742,8000	1837,8000
520	1711,8000	1806,8000		676	1743,0000	1838,0000
521	1712,0000	1807,0000		677	1743,2000	1838,2000
522	1712,2000	1807,2000		678	1743,4000	1838,4000
523	1712,4000	1807,4000		679	1743,6000	1838,6000
524	1712,6000	1807,6000		680	1743,8000	1838,8000
525	1712,8000	1807,8000		729	1753,6000	1848,6000
526	1713,0000	1808,0000		730	1753,8000	1848,8000
527	1713,0000	1808,2000		731	1754,0000	1849,0000
528	1713,2000	1808,4000		732	1754,2000	1849,2000
529	1713,4000	1808,6000		733	1754,4000	1849,4000
530	1713,8000	1808,8000		734	1754,6000	1849,6000
594	1713,8000	1821,6000		735	1754,8000	1849,8000
595	1726,8000			736	1755,0000	1850,0000
596		1821,8000 1822,0000		737	1755,2000	1850,2000
597	1727,0000	1822,2000		738	1755,4000	1850,4000
598	1727,2000	_'		739	1755,8000	1850,6000
599	1727,4000	1822,4000		740	1755,8000	1850,8000
	1727,6000	1822,6000		741	1756,0000	1851,0000
600	1727,8000	1822,8000		742	1756,2000	1851,2000
601	1728,0000	1823,0000		743	1758,4000	1851,4000
602	1728,2000	1823,2000		744	1756,6000	1851,6000
603	1728,4000	1823,4000		745	1756,8000	1851,8000
604	1728,6000	1823,6000 1823,8000		746	1757,0000	1852,0000
605	1728,8000	-0.000000000000000000000000000000000000		747	1757,2000	1852,2000
606	1729,0000	1824,0000		748	1757,4000	1852,4000
607	1729,2000	1824,2000		749	1757,6000	1852,6000
608	1729,4000	1824,4000		750	1757,8000	1852,8000
609	1729,6000	1824,6000		805	1768,8000	1863,8000
610	1729,8000	1824,8000		806	1769,0000	1864,0000
611	1730,0000	1825,0000		807	1769,0000	1864,0000
612	1730,2000	1825,2000				1864,4000
613	1730,4000	1825,4000		808	1769,4000 1769,6000	1864,6000
614	1730,6000	1825,6000			1769,8000	1864,8000
615	1730,8000	1825,8000		810		1865,0000
662	1740,2000	1835,2000		811	1770,0000	
663	1740,4000	1835,4000		812	1770,2000	1865,2000
664	1740,6000	1835,6000		813	1770,4000	1865,4000
665	1740,8000	1835,8000		814	1770,6000	1865,6000
666	1741,0000	1836,0000		815	1770,8000	1865,8000
667	1741,2000	1836,2000	·	816	1771,0000	1866,0000

#### **AUTISUI.XLS**

		VORZUGSFF	<b>EQUENZEN 3</b>	LÄNDERFA	LL	
			AUT/I/SUI			
KANAL	Unterband	Oberband		KANAL	Unterband	Oberbano
817	1771,2000	1866,2000		835	1774,8000	1869,800
818	1771,4000	1866,4000		836	1775,0000	1870,000
819	1771,6000	1866,6000		837	1775,2000	1870,200
820	1771,8000	1866,8000		838	1775,4000	1870,400
821	1772,0000	1867,0000		839	1775,6000	1870,600
822	1772,2000	1867,2000		840	1775,8000	1870,800
823	1772,4000	1867,4000		841	1776,0000	1871,000
824	1772,6000	1867,6000		842	1776,2000	1871,200
825	1772,8000	1867,8000		843	1776,4000	1871,400
826	1773,0000	1868,0000	_	844	1776,6000	1871,600
827	1773,2000	1868,2000		845	1776,8000	1871,800
828	1773,4000	1868,4000				
829	1773,6000	1868,6000				
830	1773,8000	1868,8000				
831	1774,0000	1869,0000				
832	1774,2000	1869,2000				
833	1774,4000	1869,4000				
834	1774,6000	1869,6000				

## **Anhang F.14**

zu den Nutzungsbedingungen im Verfahren betreffend Frequenzzuteilungen in den Frequenzbereichen 800 MHz, 900 MHz und 1800 MHz:

Vorzugsfrequenzabkommen 1800 MHz 3

# Agreement

between the telecommunications administrations of Austria, Belgium, France, Germany, Luxembourg, the Netherlands and Switzerland

on the frequency coordination of systems using DCS 1800 standards in the frequency bands 1710 - 1785 MHz and 1805 - 1880 MHz

#### 1. Introduction

The telecommunications administrations of Austria, Belgium, France, Germany, Luxembourg, the Netherlands and Switzerland concluded this agreement for the purpose of the frequency coordination of systems using the DCS 1800 standards.

#### 2. Principles Background

The administrations mentioned above deemed it necessary to conclude an agreement on the division of preferential frequencies for DCS 1800 systems in conformity with the CEPT Recommendation T/R 22-07.

Such a division of preferential frequencies could form a common basis for complementary bilateral coordination agreements in which the compatibility with the fixed service should be taken into account.

When DCS 1800 systems are operated in neighbouring countries, the Vienna Agreement of 1993 shall be applied for the coordination procedure in the frequency bands 1710 - 1785 MHz and 1805 - 1880 MHz.

In order to enable each administration to decide on its own in which subbands DCS 1800 may be introduced and to decide on the number of operators the entire band was taken into account.

The entire band is divided into a number of subbands in which equal access to the spectrum is ensured for each administration. This enables each administration, if appropriate, to provide for equal coordination conditions for each DCS 1800 operator.

#### 3. Coordination between DCS 1800 systems and technical provisions

- 3.1 The division into preferential frequencies can be found in Annex 1.
- 3.2 Preferential frequencies may produce a field strength not exceeding 25 dBµV/m at 3 m above ground at a distance of 15 km in the neighbouring country.
- 3.3 Non-preferential frequencies may produce a field strength not exceeding 25 dBµV/m at 3 m above ground at the border to the neighbouring country.
- 3.4 The coordination procedures laid down in the Vienna Agreement, 1993, shall be applied.
- 3.5 Propagation criteria for the calculation of the interfering field strength are described in Annex 2.
- 3.6 For adding multiple interferers, the simplified algorithm described in Annex 3 shall be applied.
- 3.7 The technical parameters described in Annex 4 shall be used.

## 4. Coordination between DCS 1800 systems and fixed services:

The coordination of frequencies between DCS 1800 systems and fixed services shall be based on complementary bilateral agreements covering the entire frequency bands 1710 - 1785 MHz and 1805 -1880 MHz. These bilateral agreements should take into account the allotment of preferential frequencies laid down in this agreement as far as possible.

#### 5. Date of entry into force

This agreement will enter into force on a bilateral or trilateral basis concerning those parts of the frequency bands 1710 - 1785 MHz and 1805 - 1880 MHz for which all the involved administrations have informed each other of their intention to put DCS 1800 systems into operation.

As an exception, if a coordination with the fixed services is required by at least one of the involved administrations, the date of entry into force of this agreement will be subject to signing the complementary agreement.

For the administration of Austria:

For the administration of Belgium:

For the administration of France:

For the administration of Germany:

For the administration of Luxembourg:

For the administration of the Netherlands:

For the administration of Switzerland:

The original text of this agreement written in English language is retained by the German Administration.

~	
×	
a	
_	
d	

Preferential division of the frequency band 1710 - 1785 / 1805 - 1880 MHz for DCS 1800

Page 1

18_PRE23.DOC

26.01.94

frequency band					1710 (	1805) - 1	1710 (1805) - 1725 (1820) MHz	0) MHZ				
channel number	512 - 518	519 - 524	525 - 530   531 - 536	531 - 536	537 - 543	544 - 549	550 - 555	556 - 561	562 - 568	569 - 574	575 - 580	581 - 586
no of channels	7	9	9	9	7	9	9	9	7	9	9	9
D/HOL	Q	HOF	HOL	HOL	Q	Q	0	Q	HOL	HOL	HOL	Q
BEL/D/HOL	BEL	HOL	HOL	HOL	۵	٥	D	D	HOL	BEL	BEL	BEL
BEL/HOL	BEL	HOL	HOL	HOL	BEL	BEL	HOL	HOL	HOL	BEL	BEL	BEL
BEL/D	BEL	BEL	BEL	0	۵	٥	O	Q	۵	BEL	BEL	BEL
BEL/LUX	BEL	BEL	LUX	TOX	BEL	BEL	LUX	TOX	rnx	TOX	BEL	BEL
DALUX	۵	rnx	XNT		٥	۵		LUX	LUX	LUX	LUX	۵
F/LUX	ш	ш	L	L	II.	Ш	rux	LUX	LUX	rnx	rnx	TUX
BEL/F	BEL	Щ	L	L	ш	BEL	L	Ш	BEL	BEL	BEL	BEL
BEL/F/LUX	BEL	4	ш	ц.	ц.	BEL	rnx	TUX	LUX	LUX	BEL	BEL
BEL/D/LUX	BEL	BEL	rnx	0	۵	Q	٥	LUX	LUX	rux	BEL	BEL
D/F/LUX	ш	ш.	ĬL.	L	٥	. Q.	٥	LUX	LUX	LUX	LUX	۵
F/D		Ц.	工	ш	۵	٥	0	O	٥	۵	ш	Ц
F/D/SUI	ц.	ш	ш	F 535		٥	D 556	SUI	SUI	SUI	SUI	SUI
Q/INS	SUI	SUI	0	0	٥	Q	D 556		SUI	SUI	SUI	SUI
SUI/F	L	ц.	ш	Ь	ட	Щ	SUI	SUI	INS	SUI	SUI	SUI
AUT/SUI/D	AUT	AUT	AUT	٥	0	۵	D 556		SUI	SUI	SUI	SUI
AUT/SUI	AUT	AUT	AUT	AUT	AUT	AUT	SUI	SUI	SUI	SUI	SUI	SUI
AUT/D	AUT	AUT	AUT	AUT	٥	۵	۵	٥	۵	٥	AUT	AUT

The numbering of the channels is defined in Recommendation GSM 05.05 (Version 4.5.0). Channel number n corresponds to a carrier frequency FI(n) in the lower band and to a carrier frequency Fu(n) in the upper band, defined by the following equations (frequencies are in MHz):

FI (n) = 
$$1710,2+0,2*(n-512)$$
  
Fu (n) = FI(n) + 95

Preferential division of the frequency band 1710 - 1785 / 1805 - 1880 MHz for DCS 1800 Annex 1

18 PRE23.DOC

Page 2

26.01.94

594-599 600-605 606-611 612-618 619-624 625-630 631-636 637-643 644-649 650-655 656-661 BELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DELLUX DE INS INS INS 9 D SCI COX BE BE COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SCI COX SC 9 9 1725 (1820) - 1740 (1835) MHz 9 9 9 618 615 616 AUT 0 AUT 9 0 지 및 BE N X I I I I LUX 9 L 009 AUT 9 587 - 593 1 frequency band channel number no of channels BEL/F/LUX BEL/D/LUX BEL/HOL BEL/LUX D/LUX F/LUX F/LUX BEL/D/HOL AUT/SUI/D AUT/SUI AUT/D D/F/LUX F/D/SUI SUIVE F/D

Annex 1

26.01.94

Preferential division of the frequency band 1710 - 1785 / 1805 - 1880 MHz for DCS 1800

Page 3

18_PRE23.DOC

731 - 736

9

frequency band					1740 (1	1740 (1835) - 1755 (1850) MHZ	55 (1850	) MHz			
channel number	662 - 668	662 - 668   669 - 674	675 - 680	681 - 686	687 - 693	694 - 699	700 - 705	706 - 711	681-686   687-693   694-699   700-705   706-711   712-718   719-724   725-730	719 - 724	725 - 730
no of channels	7	9	9	9	7	9	9	9	7	9	9
D/HOL	Q	HOL	HOL	HOL	٥	0	0	Q	HOL	HOL	HOL
BEL/D/HOL	BEL	HOL	HOL	HOL	٥	0	Q	٥	HOL	BEL	BEL
BEL/HOL	BEL	HOL	HOL	HOL	BEL	BEL	HOL	HOL	HOL	BEL	BEL
BEL/D	BEL	BEL	BEL	Q	٥	٥	G	٥	٥	BEL	BEL
BEL/LUX	BEL	BEL	rux	KNT	BEL	BEL	TOX	LUX	LUX	LUX	BEL
D/LUX	D	LUX	LUX	Q	0	0	Q	LUX	LUX	LUX	YOT
F/LUX	Ь	L	Ш	ш	ш	Ц	LUX	LUX	LUX	LUX	LUX
BEL/F	BEL	T	Н	L	IL.	BEL	ш	Ч.	BEL	BEL	BEL
BEL/F/LUX	BEL	Ш	止	L	Щ	BEL	KUX	LUX	rnx	LUX	BEL
BEL/D/LUX	BEL	BEL	LUX	a	Q	0	Q	LUX	TUX	LUX	BEL
D/F/LUX	Ь	Ŀ	L	ட	Q	۵	0 .	LUX	LUX	LUX	LUX
F/D	H	ш	ii.	ш	a	٥	D	۵	۵	O	Н
F/D/SUI	ட	Ш	LL	۵	0	D	D	۵	SUI	SUI	728
SUI/D	SUI	۵	Q	۵	٥	Q	Q	٥	SUI	SUI	SUI
SUI/F	Ц.,	4	ഥ	L.	ш	ш	SUI	SUI	SUI	SUI	SUI
AUT/SUI/D	AUT	AUT	AUT	0	Q	D	Q	a	SUI	SUI	728
AUT/SUI	AUT	AUT	AUT	AUT	AUT	AUT	SUI	SUI	SUI	SUI	SUI
AUT/D	AUT	AUT	AUT	AUT	Q	Q	0	O	Q	Q	AUT

AUT AUT

Annex 1
Preferential divis

26.01.94

referential division of the frequency balld	1710 - 1785 / 1805 - 1880 MHz for DCS 1800	
Prei	17	

Page 4

18_PRE23.DOC

frequency band					1755 (1	850) - 17	1755 (1850) - 1770 (1865) MHz	5) MHz				
channel number	737 - 743	737 - 743   744 - 749   750 - 755		756 - 761   762 - 768	762 - 768	769 - 774	769 - 774   775 - 780   781 - 786	781 - 786	787 - 793	794 - 799	800 - 805	806 - 811
no of channels	7	9	9	9	. 7	9	9	9	7	9	9	9
D/HOL	۵	HOL	HOL	HOL	Q	0	Q.	٥	HOL	HOL	HOL	0
BEL/D/HOL	BEL	HOL	HOL	HOL	0	۵	O	0	HOL	BEL	BEL	BEL
BEL/HOL	BEL	HOL	HOL	HOL	BEL	BEL	HOL	HOL	HOL	BEL	BEL	BEL
BEL/D	BEL	BEL	BEL	0	٥	۵	D	0	0	BEL	BEL	BEL
BEL/LUX	BEL	BEL	LUX	LUX	BEL	BEL	LUX	LUX	KOZ	LUX	BEL	BEL
DALUX	٥	rnx	LUX	٥	۵	٥	۵	LUX	LUX	LUX	LUX	D
F/LUX	ш	ш	LL	L	ш	L	TUX	LUX	KNI	LUX	rnx	TOX
BEL/F	BEL	ír.	L	ш	ıL	BEL	L	L	BEL,	BEL	BEL	BEL
BEL/F/LUX	BEL	LL	ıı.	L	L	BEL	LUX	LUX	LUX	LUX	BEL	BEL
BEL/D/LUX	BEL	BEL	LUX	۵	۵	Q	۵	LUX	LUX	LUX	BEL	BEL
D/F/LUX	ш	L	L	ш	۵	Q	۵	LUX	TUX	LUX	LUX	D
F/D	ш	ıL	IL	L	D	0	٥		Q	0	٥	D
F/D/SUI	LL	F 750	۵	۵	٥	۵	۵	Q	SUI	SUI	SUI	805 F
SUI/D	SUI 7	742 D	Q	۵	Q	٥	٥	0	SUI	SUI	SUI	SUI
SUI/F	L	ш	ш	L	L	L	LL	SUI	SUI	SUI	SUI	SUI
AUT/SUI/D	AUT	AUT 750	Q	0	۵	0	0	Q	SUI	SUI	SUI	805 AUT
AUT/SUI	AUT	AUT	AUT	AUT	AUT	AUT	AUT	SUI	SUI	SUI	SUI	SUI
AUTO	AUT	AUT	AUT	AUT	G	C	O	0	۵	۵	AUT	AUT

Annex 1

26.01.94

Preferential division of the frequency band 1710 - 1785 / 1805 - 1880 MHz for DCS 1800

18_PRE23.DOC

Page 5

frequency band					1770 (1	865) - 17	1770 (1865) - 1785 (1880) MHz	O) MHZ				
channel number	812 - 818	819 - 824	812-818   819-824   825-830   831-836	831 - 836		844 - 849	850 - 855	837-843 844-849 850-855 856-861 862-867 868-873 874-879 880	862 - 867	868 - 873	874 - 879	880 - 885
no of channels	7	9	9	9	7	9	9	9	9	9	9	9
D/HOL	0	HOL	HOL	HOL	0	0 .	Q	Q	HOL	HOL	HOL	٥
BEL/D/HOL	BEL	HOL	HOL	HOL	Q	۵	٥	0	HOL	BEL	BEL	BEL
BEL/HOL	BEL	HOL	HOL	HOL	BEL	BEL	HOL	HOL	HOL	BEL	BEL	BEL
BEL/D	BEL	BEL	BEL	D	٥	۵	Q	Q	۵	BEL	BEL	BEL
BEL/LUX	BEL	BEL	TUX	LUX	BEL	BEL	TUX	LUX	FNX	LUX	BEL	BEL
D/LUX	D	TUX	TOX	D	۵	٥	۵	LUX	LUX	LUX	LUX	Q
F/LUX	Ц	L	LL		ш	L.	LUX	TUX	LUX	LUX	LUX	LUX
BELIF	BEL	ıı	L	L	ட	BEL	ĮL.	L	BEL	BEL	BEL	BEL
BEL/F/LUX	BEL	Ш	ш	L	Ц	BEL	LUX	LUX	KOT	LUX	BEL	BEL
BEL/D/LUX	BEL	BEL	LUX	۵	0	0	a	LUX	KNT	LUX	BEL	BEL
D/F/LUX	Ц	ıL	LL.	Ł	0	0	O	LUX	TOX	LUX	LUX	O
F/D	ш	ıL	ш	L	ш	L	L	L	Q	0	۵	٥
F/D/SUI	L	ш	Ш	L	F 845		O	O	SUI	INS .	SUI	SUI
SUI/D	SUI	SUI		Q	۵	Q	D	Q	SUI	SUI	SUI	SUI
SUI/F SUI	I 813 F	Н	L	L	L	L.	F	SUI	SUI	SUI	SUI	SUI
AUT/SUI/D	AUT	AUT	AUT	AUT	AUT 845		O	0	SUI	SUI	SUI	SUI
AUT/SUI SUI	I 813 AUT	AUT	AUT	AUT	AUT	AUT	AUT	SUI	SUI	SUI	SUI	SUI
AUT/D	AUT	AUT	AUT	AUT	۵	0		0	AUT	AUT	AUT	AUT

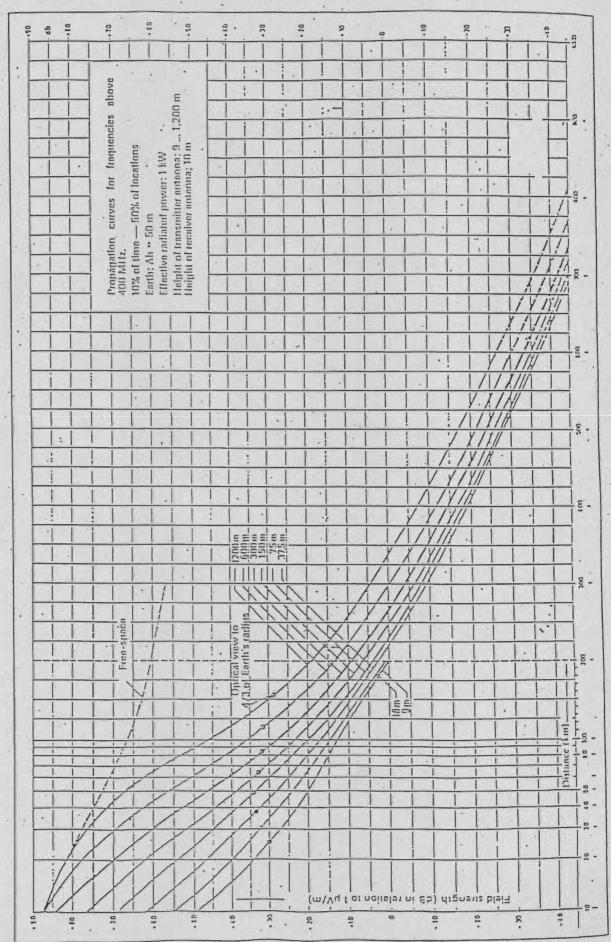
### Propagation criteria

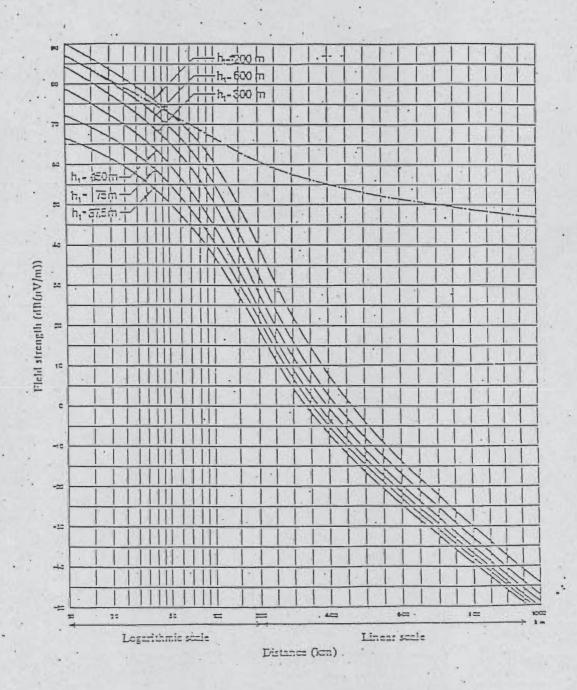
The curves attached to this Annex should be used to determine the interfering field strength. Administrations may agree on other curves, e.g. the latest version of CCIR Report 567.

#### Correction factors

A general correction factor of -9 dB is used in the 1800 MHz band

Correction factor for receiving antenna from 10 m to 3 m:


Distance < 50 km: -10 dB Distance > 100 km: -3 dB


Linear interpolation is used for intermediate distances. For sea path propagation the correction factor for receiving antenna from 10 m to 3 m is -10 dB.

#### Effective antenna height

The effective antenna height is the difference between the physical height of the antenna and the average height of the terrain. The average height of the terrain is the arithmetic mean of the terrain heights as measured at intervals of 1, 2, 3 ..., 14, 15 km in the direction being considered. If, beyond the 15 km limit, there are mountains which constitute major topographical obstacles, a distance of more than 15 km may be taken into account.

## PROPAGATION CURVES FOR FREQUENCIES ABOVE 400 MHz





Field strength (dB ( $\mu$ V/m)) for 1 kW e.r.p.

Frequency: 450 to 1000 MHz (Eands IV and V) – Cold sea – 10% of the time – 50% of the locations –  $h_1$  = 10 m

— • — Free space

#### 1. Simplified algorithm for frequency co-ordination

#### 1.1 Notation

P = e.i.r.p of wanted transmitter in direction of receiver (dBm)

L = Isotropic path loss from wanted transmitter to receiver (dB)

P_i = e.i.r.p of interfering transmitter i in direction of receiver (dBm)

L_i = Isotropic path loss from interfering transmitter i to receiver (dB)

α = Receiver antenna gain towards wanted transmitter (dBi)

 $\alpha_i$  = Receiver antenna gain towards interfering transmitter i (dBi)

β_i = Gain due to receiver filter selectivity on interference from transmitter i (dB)

γ = Estimated shadowing margin to be allowed on C/I value (dB)

C = Total wanted carrier power at receiver input (dBm)

I_i = Effective interfering power due to transmitter i at receiver input (allowing for the effect of receiver filtering) (dBm)

 1 = Total effective interfering power at receiver input (allowing for shadowing margin) (dBm)

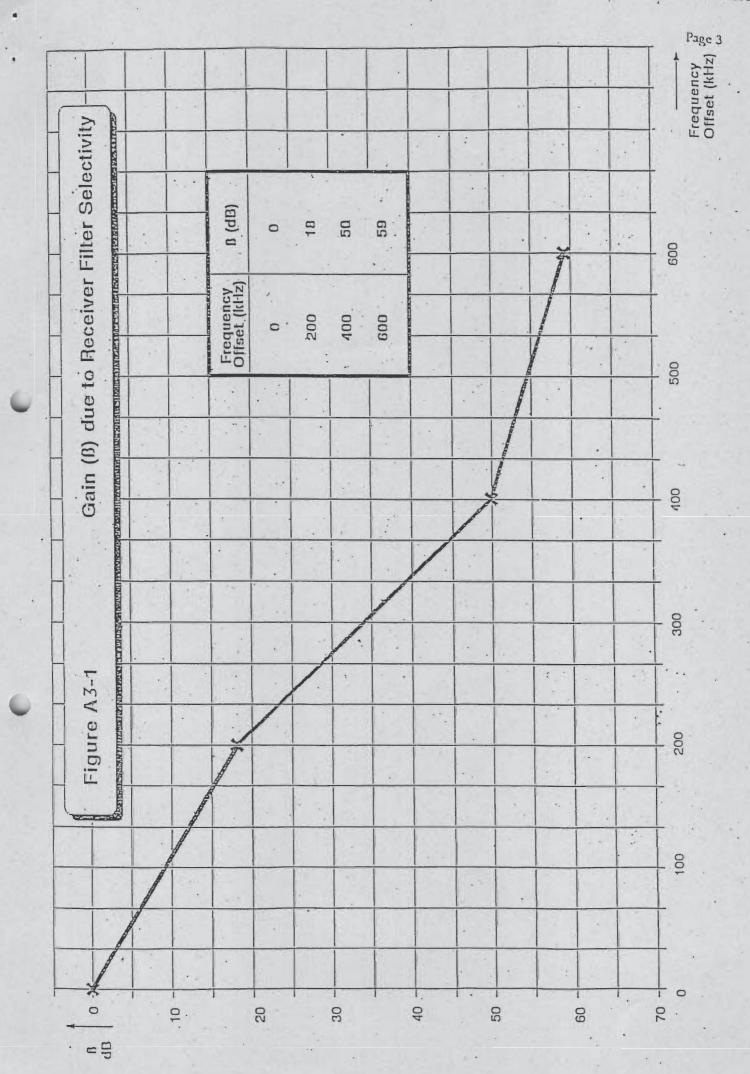
λ = C/I threshold value

#### 1.2. Base-mobile Path Algorithm

- (a) For each cell in question, take one or more "worst case" mobile station MS locations. These are locations at which the C/I is known, or believed to be, lowest.
- (b) Calculate the wanted carrier power at the receiver input:C = P L + α
- (c) Calculate the effective interfering power due to each potentially interfering transmitter (whether co-channel or adjacent channel) at the receiver input (allowing for the effect of receiver filtering):
  I_i = P_i L_i + α_i + β_i
- (d) Sum the interfering powers at the receiver and allow for the shadowing margin:  $I = 10 \log_{10} \Sigma 10^{(l_i/10)} + \gamma$
- (e) Check the effective C/I ratio (C-I) against the threshold value λ.

#### 1.3. Mobile-base Path Algorithm

(a) Take each cell that has a potentially interfering mobile station (MS). If N is the number of carrier frequencies allocated to that cell that can cause potential interference to the base station (BS), assume there are N MS's, one radiating each carrier, in that cell.


A proportion of the total number of MS's so identified (e.g. 20%) should be assumed to be at the worst case locations of their cells and the rest at the mid-point of their cells.

Alternatively a "Monte Carlo" simulation can be undertaken in which a number of "snapshots" of the interference scenario are taken. In each snapshot, the interfering MS's are placed at random locations (uniformly distributed) within their cells. To find for example the 90% C/I value, 100 snapshots could be taken, and the C/I which is exceeded by 90 of the snapshots used.

- (b) Perform steps (b) to (e) of the base-mobile path algorithm.
- 1.4. Notes on Calculation of Parameters
- (a) P, P; These should be supplied by the public land mobile network (PLMN) operators. For DCS-1800 transmitters, each P, P; is the power in the active part of the time slot.
- (b) L, L_i These can either be calculated using appropriate terrain modelling, or some simplified power distance law, e.g. d^{-3.3}.
- (c)  $\alpha$ ,  $\alpha_i$ . These should be supplied by the PLMN operators.
- (d)  $\beta_i$  These can be read off Figure A3-1
- (e) If shadowing effects have been allowed for in the calculation of L and L_i, γ can be set to 0. Otherwise a value of 7 dB could be used (this assumes the wanted and unwanted signals each have a 5 dB shadowing margin (log-normal distribution) and the composite shadowing margin is 1,41 x 5 dB, i.e. 7 dB).
- (f) \(\lambda\) can be taken as follows:

DCS receiver. = 9 dB

Note: The calculation must take into account all interfering transmitters from the wanted PLMN as well those from the neighbouring PLMN's.



Annex 4

Technical parameters of the DCS-1800 system

C/I ratios

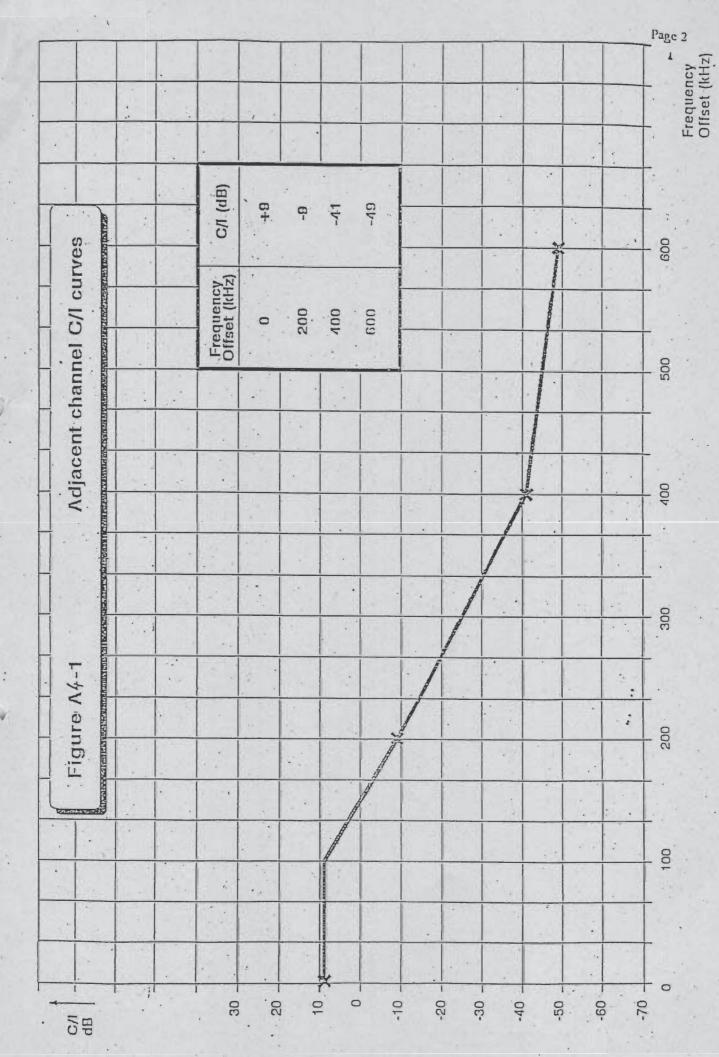
The C/I ratio is the ratio between signal power to interfering signal power at the receiver input during the active part of the DCS-1800 timeslot including multiple interferers.

The following C/I ratios apply:

Wanted		Interferer	Co-channel	200 kHz	H,	400 kHz 6	600 kHz
DCS-1800 (1)		DCS-1800	9 dB	-9 dB		- 41 dB -	49 dB

A curve indicating C/I values for intermediate values of frequency offset are attached to this Annex.

Notes: (Figure A4-1)

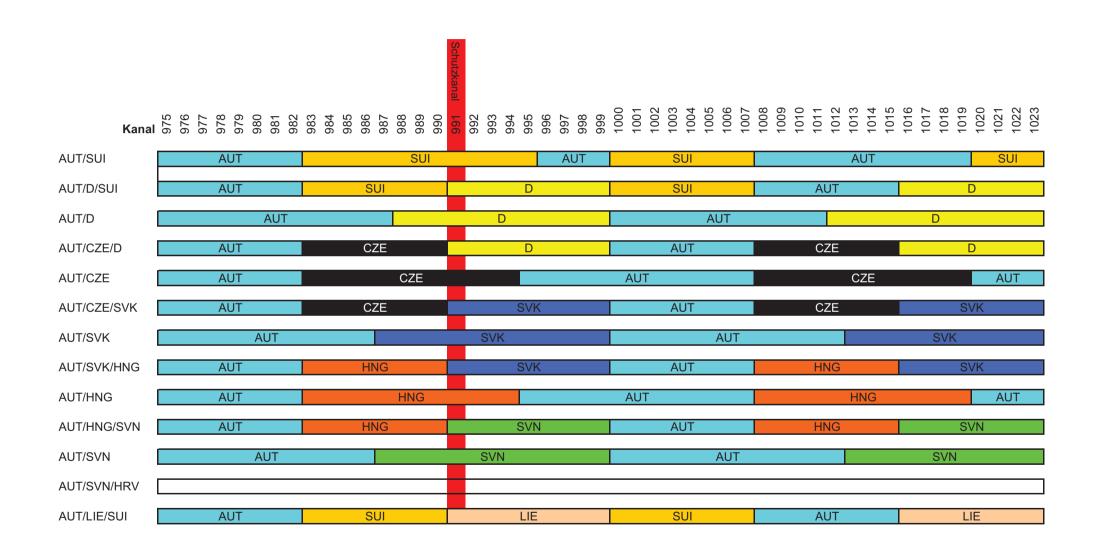

Minimum field strength to be protected (Emin):

(50% of location - 50% of time) .

DCS-1800 MS 42 dBµV/m (1)

DCS-1800 BS 38 dBµV/m (1)

(1) Values from GSM recommendation 05-05 (Version 4.3.0)




## **Anhang F.15**

zu den Nutzungsbedingungen im Verfahren betreffend Frequenzzuteilungen in den Frequenzbereichen 800 MHz, 900 MHz und 1800 MHz:

Übersicht Vorzugskanäle 900 MHz

#### Frequenzaufteilung GSM 900 MHz



## Frequenzaufteilung GSM 900 MHz

Kanal	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
AUT/SUI	AUT
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
AUT/D/SUI	AUT SUI D
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
AUT/D	AUT
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
AUT/CZE/D	AUT
AUT/075	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
AUT/CZE	AUT  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
AUT/CZE/SVK	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 SVK
AUT/OZE/3VK	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
AUT/SVK	AUT SVK
7.017071	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
AUT/SVK/HNG	AUT SVK HNG
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
AUT/HNG	AUT
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
AUT/HNG/SVN	AUT SVN HNG
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
AUT/SVN	AUT
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
AUT/SVN/HRV	AUT SVN HRV

AUT/LIE/SUI

AUT/LIE/SUI

## Frequenzaufteilung GSM 900 MHz

Kanal 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

AUT/SUI	AUT
AU1/501	
ALIT/D/CLII	81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
AUT/D/SUI	AUT D
ALIT/D	81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
AUT/D	AUT
	81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
AUT/CZE/D	AUT AUT CZE
	81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
AUT/CZE	AUT
	81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
AUT/CZE/SVK	AUT SVK
	81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
AUT/SVK	AUT
	81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
AUT/SVK/HNG	AUT     HNG   SVK
	81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
AUT/HNG	AUT
	81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
AUT/HNG/SVN	AUT SVN
	81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
AUT/SVN	AUT
	81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
AUT/SVN/HRV	AUT SVN

AUT/LIE/SUI

## Frequenzaufteilung GSM 900 MHz

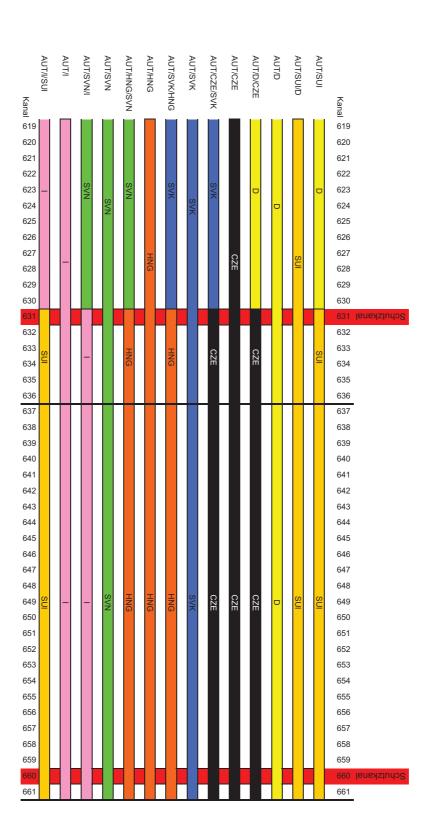
	Schutzkanal
Kanal	107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
AUT/SUI	SUI
	107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
AUT/D/SUI	SUI SUI
	107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
AUT/D	D CT1
	107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
AUT/CZE/D	CT1
	107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
AUT/CZE	CZE CT1
ALIT/07F/0\//	107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
AUT/CZE/SVK	CZE CT1 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
AUT/SVK	107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 SVK CT1
AUI/SVK	107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
AUT/SVK/HNG	HNG CT1
7.01/07171110	107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
AUT/HNG	HNG CT1
	107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
AUT/HNG/SVN	HNG CT1
	107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
AUT/SVN	SVN
	107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
AUT/SVN/HRV	HRV CT1
AUT/LIE/SUI	

Kanal Nr.	Frequenz UB	Frequenz OB
	MHz	MHz
1	890,200	935,200
2	890,400	935,400
3	890,600	935,600
4	890,800	935,800
5	891,000	936,000
6	891,200	936,200
7	891,400	936,400
8	891,600	936,600
9	891,800	936,800
10	892,000	937,000
11	892,200	937,200
12	892,400	937,400
13	892,600	937,600
14	892,800	937,800
15	893,000	938,000
16	893,200	938,200
17	893,400	938,400
18	893,600	938,600
19	893,800	938,800
20	894,000	939,000
21	894,200	939,200
22	894,400	939,400
23	894,600	939,600
24	894,800	939,800
25	895,000	940,000
26	895,200	940,200
27	895,400	940,400
28	895,600	940,600
29	895,800	940,800
30	896,000	941,000

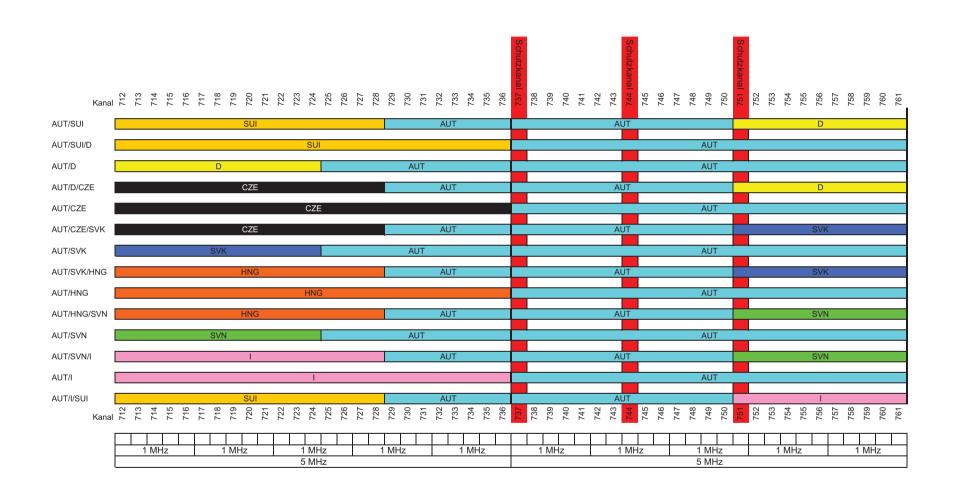
Kanal Nr.	Frequenz UB	Frequenz OB
	MHz	MHz
31	896,200	941,200
32	896,400	941,400
33	896,600	941,600
34	896,800	941,800
35	897,000	942,000
36	897,200	942,200
37	897,400	942,400
38	897,600	942,600
39	897,800	942,800
40	898,000	943,000
41	898,200	943,200
42	898,400	943,400
43	898,600	943,600
44	898,800	943,800
45	899,000	944,000
46	899,200	944,200
47	899,400	944,400
48	899,600	944,600
49	899,800	944,800
50	900,000	945,000
51	900,200	945,200
52	900,400	945,400
53	900,600	945,600
54	900,800	945,800
55	901,000	946,000
56	901,200	946,200
57	901,400	946,400
58	901,600	946,600
59	901,800	946,800
60	902,000	947,000

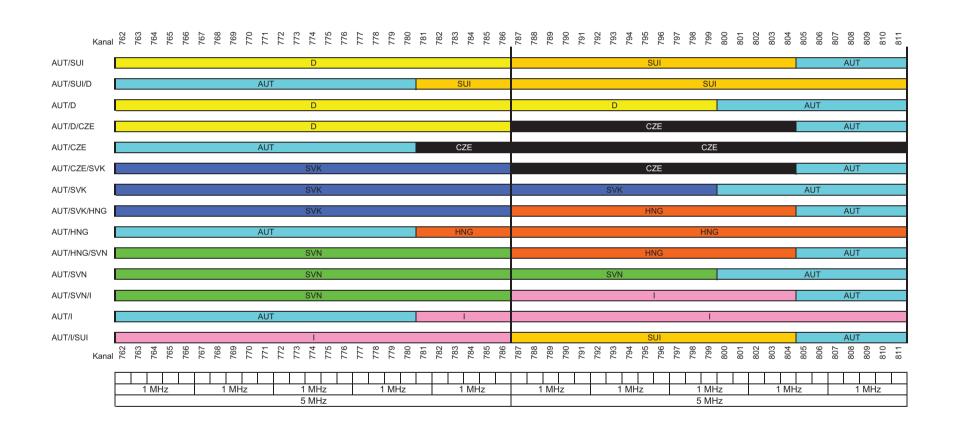
Kanal Nr.	Frequenz UB	Frequenz OB
	MHz	MHz
61	902,200	947,200
62	902,400	947,400
63	902,600	947,600
64	902,800	947,800
65	903,000	948,000
66	903,200	948,200
67	903,400	948,400
68	903,600	948,600
69	903,800	948,800
70	904,000	949,000
71	904,200	949,200
72	904,400	949,400
73	904,600	949,600
74	904,800	949,800
75	905,000	950,000
76	905,200	950,200
77	905,400	950,400
78	905,600	950,600
79	905,800	950,800
80	906,000	951,000
81	906,200	951,200
82	906,400	951,400
83	906,600	951,600
84	906,800	951,800
85	907,000	952,000
86	907,200	952,200
87	907,400	952,400
88	907,600	952,600
89	907,800	952,800
90	908,000	953,000

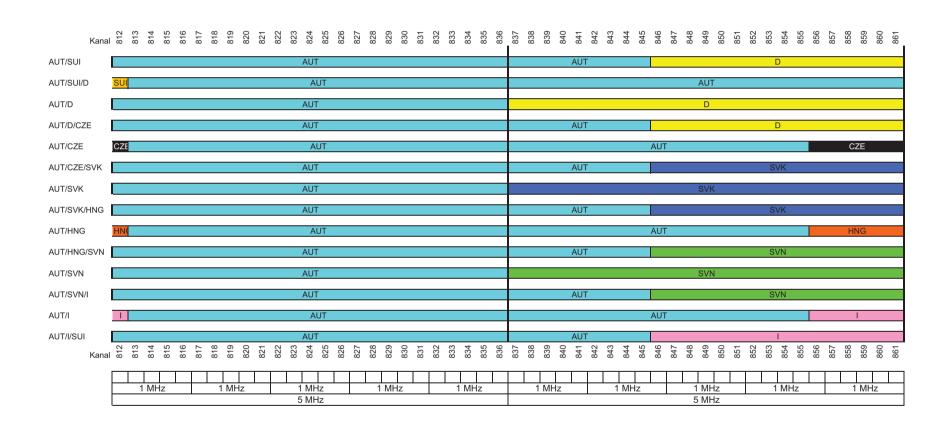
Kanal Nr.	Frequenz UB	Frequenz OB
	MHz	MHz
91	908,200	953,200
92	908,400	953,400
93	908,600	953,600
94	908,800	953,800
95	909,000	954,000
96	909,200	954,200
97	909,400	954,400
98	909,600	954,600
99	909,800	954,800
100	910,000	955,000
101	910,200	955,200
102	910,400	955,400
103	910,600	955,600
104	910,800	955,800
105	911,000	956,000
106	911,200	956,200
107	911,400	956,400
108	911,600	956,600
109	911,800	956,800
110	912,000	957,000
111	912,200	957,200
112	912,400	957,400
113	912,600	957,600
114	912,800	957,800
115	913,000	958,000
116	913,200	958,200
117	913,400	958,400
118	913,600	958,600
119	913,800	958,800

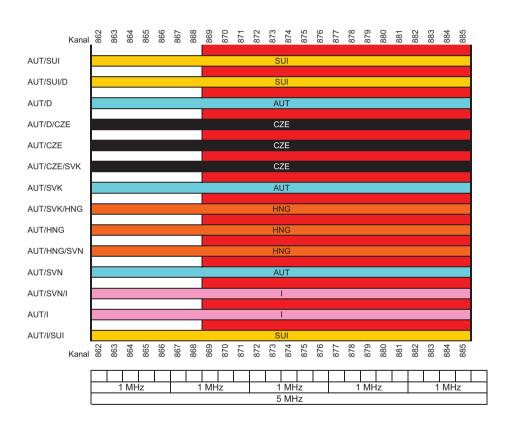

## **Anhang F.16**

zu den Nutzungsbedingungen im Verfahren betreffend Frequenzzuteilungen in den Frequenzbereichen 800 MHz, 900 MHz und 1800 MHz:


Übersicht Vorzugskanäle 1800 MHz


Kanal 512	AUT/I/SUI		AUT/I	AUT/SVN/I	AUT/SVN	AUT/HNG/SVN	AUT/HNG	AUT/SVK/HNG	AUT/SVK	AUT/CZE/SVK	AUT/CZE	AUT/D/CZE	AUT/D	AUT/SUI/D	AUT/SUI	Kanal
513 514 515 516 517 518 519 520 521	AUT			АПТ		AUT		АИТ		AUT		АИТ			АИТ	512 513 514 515 516 517 518 519 520 521
522 523 524 525 526 527 528 529	3		AUT		AUT		AUT		AUT		AUT		AUT	AUT		522 [euexzinuos 523 524 525 526 527 528 529
530 531 532 533 534 535 536				SVN		SVN		SVK		SVK		D			D	530 531 532 533 534 535 536
5377 5388 5399 5401 5412 5432 5444 5455 5465 5477 5488	22		АПТ	NAS		NAS	AUT	SVK		SVK	AUT	D		AUT	D	537 538 539 540 541 542 543 544 545 546 547
549 550 551 552 553 554 555 557 558	3 4 5 5 5 5 7	-			SVN	HNG	HNG	HNG	SVK	CZE	CZE	CZE	D	SUI	SUI	549 550 551 552 553 554 555 556 557 558


Kanal 562	AUT/I/SUI	AUT/I	AUT/SVN/I	AUT/SVN		ALIT/HNG/SVNI	AUT/HNG	AUT/SVK/HNG	AUT/SVK	AUT/CZE/SVK	:	AUT/CZE	AUT/D/CZE	AUT/D			AUT/SUI	Kanal
562 563 564 565 566 567																		562 563 564 565 566 567
568 569 570 571 572 573				SVN					SVK					D				568 569 570 571 572 573
574 575 576 577 578 579 580 581	SUI	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	_	AUT		TNO	HNG	HNG	AUT	CZE	į	CZE	CZE	AUT	9		SUI	574   REURYZINUDS   575   576   577   578   579   580   581
582 583 584 585 586 587 588																		582 583 584 585 586 587
589 590 591 592 593 594	SUI		_			HNIG	HNG	HNG		CZE		CZE	CZE				SUI	589 590 591 592 593 594
595 596 597 598 599 600 601 602 603 604 605 606 607 608	AUT	AUT	AUT	AUT	70-	AHT	AUT	AUT	AUT	AUT		AUT	AUT	AUT	787	TIIA	AUT	595 596 597 598 599 600 601 602 603 604 605 606 607 608
609 610 611 612 613 614 615 616 617		AUT					AUT					AUT			70-	ΔΙΙΤ		609 610 611 612 613 614 615 616 617




Kanal 662	AUT/I/SUI	AUT/I	AUT/SVN/I	AUT/SVN	AUT/HNG/SVN	AUT/HNG	AUT/SVK/HNG	AUT/SVK	A01/045/047	VI IT/O 7E/SV/K	AUT/CZE	AU I/D/CZE	2	AUT/D	AUT/SUI/D	AUT/SUI	Kanal
662 663 664 665 666																	662 663 664 665 666 667   Buby Zinuo S
668 669 670 671 672 673	AUT		AUT		AUT		AUT		AUI	۸۱۱۲	,	AUI	2			AUT	668 669 670 671 672 673
674 675 676 677 678 679		AUT		AUT		AUT		AUT			AUT			AUT	AUT		674   PEURYZINUS 675 676 677 678 679 680
681 682 683 684 685 686	_		SVN		NAS		SVK		047	XIVO			,			D	681 682 683 684 685 686
687 688 689 690 691 692 693 694 695		AUT				AUT					AUT				AUT		687 688 689 690 691 692 693 694 695
697 698 699 700 701 702 703 704 705	_		NVS	SVN	SVN		SVK	SVK	0 < 7	XIVS	C		ז	D	(8)	D	697 698 699 700 701 702 703 704 705
706 707 708 709 710 711						HNG					CZE				SUI		706 707 708 709 710 711









Kanal Nr.	Frequenz UB	Frequenz OB
	MHz	MHz
512	1710,2	1805,2
513	1710,4	1805,4
514	1710,6	1805,6
515	1710,8	1805,8
516	1711	1806
517	1711,2	1806,2
518	1711,4	1806,4
519	1711,6	1806,6
520	1711,8	1806,8
521	1712	1807
522	1712,2	1807,2
523	1712,4	1807,4
524	1712,6	1807,6
525	1712,8	1807,8
526	1713	1808
527	1713,2	1808,2
528	1713,4	1808,4
529	1713,6	1808,6
530	1713,8	1808,8
531	1714	1809
532	1714,2	1809,2
533	1714,4	1809,4
534	1714,6	1809,6
535	1714,8	1809,8
536	1715	1810
537	1715,2	1810,2
538	1715,4	1810,4
539	1715,6	1810,6
540	1715,8	1810,8
541	1716	1811
542	1716,2	1811,2
543	1716,4	1811,4
544	1716,6	1811,6
545	1716,8	1811,8
546	1717	1812
547	1717,2	1812,2
548	1717,4	1812,4
549	1717,6	1812,6
550 551	1717,8	1812,8
551 552	1718	1813
552 552	1718,2	1813,2
553	1718,4 1718,6	1813,4
554 555	1718,6 1718,8	1813,6 1813,8
556	17 10,0	1814
557	1719,2	1814,2
557 558	1719,2	1814,4
559	1719,4	1814,6
560	1719,8	1814,8
561	1719,8	1815
562	1720,2	1815,2
563	1720,2	1815,4
564	1720,4	1815,6
JU4	1720,0	1013,0

Kanal Nr.	Frequenz UB	Frequenz OB
rana ivi.	MHz	MHz
565	1720,8	1815,8
566	1721	1816
567	1721,2	1816,2
568	1721,4	1816,4
569	1721,4	1816,6
570	1721,8	1816,8
571	1721,0	1817
572	1722,2	1817,2
573	1722,2	1817,4
574	1722,4	1817,4
575	1722,8	1817,8
576	1723	1818
577	1723,2	1818,2
578	1723,4	1818,4
579	1723,6	1818,6
580	1723,8	1818,8
581	1724	1819
582	1724,2	1819,2
583	1724,4	1819,4
584	1724,6	1819,6
585	1724,8	1819,8
586	1725	1820
587	1725,2	1820,2
588	1725,4	1820,4
589	1725,6	1820,6
590	1725,8	1820,8
591	1726	1821
592	1726,2	1821,2
593	1726,4	1821,4
594	1726,6	1821,6
595	1726,8	1821,8
596	1727	1822
597	1727,2	1822,2
598	1727,4	1822,4
599	1727,6	1822,6
600	1727,8	1822,8
601	1728	1823
602	1728,2	1823,2
603	1728,4	1823,4
604	1728,6	1823,6
605	1728,8	1823,8
606	1729	1824
607	1729,2	1824,2
608	1729,4	1824,4
609	1729,6	1824,6
610	1729,8	1824,8
611	1730	1825
612	1730,2	1825,2
613	1730,4	1825,4
614	1730,6	1825,6
615	1730,8	1825,8
616	1731	1826
617	1731,2	1826,2

Kanal Nr.	Frequenz UB	Frequenz OB
	MHz	MHz
618	1731,4	1826,4
619	1731,6	1826,6
620	1731,8	1826,8
621	1732	1827
622	1732,2	1827,2
623	1732,4	1827,4
624	1732,6	1827,6
625	1732,8	1827,8
626	1733	1828
627	1733,2	1828,2
628	1733,4	1828,4
629	1733,6	1828,6
630 631	1733,8 1734	1828,8 1829
632	1734,2	1829,2
633	1734,4	1829,4
634	1734,4	1829,6
635	1734,8	1829,8
636	1735	1830
637	1735,2	1830,2
638	1735,4	1830,4
639	1735,6	1830,6
640	1735,8	1830,8
641	1736	1831
642	1736,2	1831,2
643	1736,4	1831,4
644	1736,6	1831,6
645	1736,8	1831,8
646	1737	1832
647	1737,2	1832,2
648	1737,4	1832,4
649	1737,6	1832,6
650	1737,8	1832,8
651	1738	1833
652	1738,2	1833,2
653	1738,4	1833,4
654	1738,6	1833,6
655 656	1738,8	1833,8
656 657	1739	1834
658	1739,2 1739,4	1834,2 1834,4
659	1739,4	1834,4
660	1739,8	1834,8
661	1740	1835
662	1740,2	1835,2
663	1740,4	1835,4
664	1740,6	1835,6
665	1740,8	1835,8
666	1741	1836
667	1741,2	1836,2
668	1741,4	1836,4
669	1741,6	1836,6
670	1741,8	1836,8

Kanal Nr.	Frequenz UB	Frequenz OB
rana m.	MHz	MHz
671	1742	1837
672	1742,2	1837,2
673	1742,4	1837,4
674	1742,6	1837,6
675	1742,8	1837,8
676	1743	1838
677	1743,2	1838,2
678	1743,4	1838,4
679	1743,6	1838,6
680	1743,8	1838,8
681	1744	1839
682	1744,2	1839,2
683	1744,4	1839,4
684	1744,6	1839,6
685	1744,8	1839,8
686	1745	1840
687	1745,2	1840,2
688	1745,4	1840,4
689	1745,6	1840,6
690	1745,8	1840,8
691	1746	1841
692	1746,2	1841,2
693	1746,4	1841,4
694	1746,6	1841,6
695	1746,8	1841,8
696	1747	1842
697	1747,2	1842,2
698	1747,4	1842,4
699	1747,6	1842,6
700	1747,8	1842,8
701	1748	1843
702	1748,2	1843,2
703	1748,4	1843,4
704	1748,6	1843,6
705	1748,8	1843,8
706	1749	1844
707	1749,2	1844,2
708	1749,4	1844,4
709 710	1749,6	1844,6
710 711	1749,8	1844,8 1845
711 712	1750 1750,2	
712	1750,2	1845,2 1845,4
713	1750,4	1845,6
714	1750,8	1845,8
715	1750,8	1846
710	1751,2	1846,2
717	1751,2	1846,4
719	1751,4	1846,6
720	1751,8	1846,8
721	1751,6	1847
722	1752,2	1847,2
723	1752,4	1847,4

Kanal Nr.	Frequenz UB	Frequenz OB
	MHz	MHz
724	1752,6	1847,6
725	1752,8	1847,8
726	1753	1848
727	1753,2	1848,2
728	1753,4	1848,4
729	1753,6	1848,6
730	1753,8	1848,8
731	1754	1849
732	1754,2	1849,2
733	1754,4	1849,4
734	1754,6	1849,6
735	1754,8	1849,8
736	1755	1850
737	1755,2	1850,2
738	1755,4	1850,4
739	1755,6	1850,6
740	1755,8	1850,8
741	1756	1851
742	1756,2	1851,2
743	1756,4	1851,4
744 745	1756,6	1851,6
745 746	1756,8 1757	1851,8 1852
740	1757,2	1852,2
747	1757,2	1852,4
749	1757,4	1852,6
750	1757,8	1852,8
751	1758	1853
752	1758,2	1853,2
753	1758,4	1853,4
754	1758,6	1853,6
755	1758,8	1853,8
756	1759	1854
757	1759,2	1854,2
758	1759,4	1854,4
759	1759,6	1854,6
760	1759,8	1854,8
761	1760	1855
762	1760,2	1855,2
763	1760,4	1855,4
764	1760,6	1855,6
765	1760,8	1855,8
766	1761	1856
767	1761,2	1856,2
768	1761,4	1856,4
769 770	1761,6	1856,6
770	1761,8	1856,8
771	1762	1857
772 772	1762,2	1857,2
773	1762,4	1857,4 1857,6
774 775	1762,6 1762.8	1857,6 1857.8
775 776	1762,8 1763	1857,8 1858
110	1703	1000

Kanal Nr.	Frequenz I IR	Frequenz OB
Kanai Wi.	MHz	MHz
777	1763,2	1858,2
778	1763,4	1858,4
779	1763,6	1858,6
780	1763,8	1858,8
	1763,8	1859
781		
782	1764,2	1859,2
783	1764,4	1859,4
784	1764,6	1859,6
785	1764,8	1859,8
786	1765	1860
787	1765,2	1860,2
788	1765,4	1860,4
789	1765,6	1860,6
790	1765,8	1860,8
791	1766	1861
792	1766,2	1861,2
793	1766,4	1861,4
794	1766,6	1861,6
795	1766,8	1861,8
796	1767	1862
797	1767,2	1862,2
798	1767,4	1862,4
799	1767,6	1862,6
800	1767,8	1862,8
801	1768	1863
802	1768,2	1863,2
803	1768,4	1863,4
804	1768,6	1863,6
805	1768,8	1863,8
806	1769	1864
807	1769,2	1864,2
808	1769,2	1864,4
809		
	1769,6	1864,6
810	1769,8	1864,8
811	1770	1865
812	1770,2	1865,2
813	1770,4	1865,4
814	1770,6	1865,6
815	1770,8	1865,8
816	1771	1866
817	1771,2	1866,2
818	1771,4	1866,4
819	1771,6	1866,6
820	1771,8	1866,8
821	1772	1867
822	1772,2	1867,2
823	1772,4	1867,4
824	1772,6	1867,6
825	1772,8	1867,8
826	1773	1868
827	1773,2	1868,2
828	1773,4	1868,4
829	1773,6	1868,6

Kanal Nr.	Frequenz UB	Frequenz OE
	MHz	MHz
830	1773,8	1868,8
831	1774	1869
832	1774,2	1869,2
833	1774,4	1869,4
834	1774,6	1869,6
835	1774,8	1869,8
836	1775	1870
837	1775,2	1870,2
838	1775,4	1870,4
839	1775,6	1870,6
840	1775,8	1870,8
841	1776	1871
842	1776,2	1871,2
843	1776,4	1871,4
844	1776,6	1871,6
845	1776,8	1871,8
846	1777	1872
847	1777,2	1872,2
848	1777,4	1872,4
849	1777,6	1872,6
850	1777,8	1872,8
851	1778	1873
852	1778,2	1873,2
853	1778,4	1873,4
854	1778,6	1873,6
855	1778,8	1873,8
856	1779	1874
857	1779,2	1874,2
858	1779,4	1874,4
859	1779,6	1874,6
860	1779,8	1874,8
861	1780	1875
862	1780,2	1875,2
863	1780,4	1875,4
864	1780,6	1875,6
865	1780,8	1875,8
866	1781	1876
867	1781,2	1876,2
868	1781,4	1876,4
869	1781,6	1876,6
870	1781,8	1876,8
871	1782	1877
872	1782,2	1877,2
873	1782,4	1877,4
874	1782,6	1877,6
875	1782,8	1877,8
876	1783	1878
877	1783,2	1878,2
878	1783,4	1878,4
879	1783,6	1878,6
880	1783,8	1878,8
881	1784	1879
882	1784,2	1879,2
	- ,—	,-

Kanal Nr.	Frequenz UB	Frequenz OB
	MHz	MHz
883	1784,4	1879,4
884	1784,6	1879,6
885	1784,8	1879,8

## **Anhang F.17**

zu den Nutzungsbedingungen im Verfahren betreffend Frequenzzuteilungen in den Frequenzbereichen 800 MHz, 900 MHz und 1800 MHz:

Vereinbarung 900/1800 MHz Österreich, Slowakei, Ungarn, Slowenien, Kroatien, Rumänien, Serbien und Ukraine

## **TECHNICAL ARRANGEMENT**

BETWEEN THE NATIONAL FREQUENCY MANAGEMENT AUTHORITIES OF AUSTRIA, CROATIA, HUNGARY, ROMANIA, SERBIA, THE SLOVAK REPUBLIC, SLOVENIA AND UKRAINE

# ON BORDER COORDINATION OF IMT/UMTS SYSTEMS IN GSM BANDS

880 - 915/925 - 960 MHz and 1710 - 1785/1805 - 1880 MHz

**Budapest, 28th October 2010** 

#### 1 Introduction

In the framework of article 6 of ITU Radio Regulations, of bi- or multilateral agreements, arrangements or protocols dealing with frequency coordination in general (e.g. the "HCM Agreement"), the Croatian Post and Electronic Communications Agency (Croatia), the Federal Ministry for Transport, Innovation and Technology (Austria), the National Communications Authority (Hungary), the National Authority for Management and Regulation in Communications (Romania), the Post and Electronic Communications Agency of the Republic of Slovenia (Slovenia), the Republic Agency for Electronic Communications of Republic of Serbia (Serbia), the Telecommunications Regulatory Authority of the Slovak Republic (Slovak Republic) and the Ukrainian State Centre of Radio Frequencies (Ukraine) (hereinafter called Signatory Authorities) **concluded this Technical Arrangement concerning the usage of the frequencies for IMT/UMTS network** in the bands 880 – 915/925 – 960 MHz (GSM 900 MHz band) and 1710 – 1785/1805 – 1880 MHz (GSM 1800 MHz band).

In the above mentioned frequency bands and in border areas – except some parts of them – the frequency usage has only been regulated for GSM technology in special bi- or multilateral agreements, arrangements or protocols. At the same time, as indicated in ECC Decision ECC/DEC/(06)13, in these bands the migration of 2G (GSM technology) to 3G (UMTS technology) makes vital the introduction of broad band technologies, too.

In line with ECC Decision ECC/DEC/(06)13, it is also important to protect and sustain GSM technologies for the future. Nevertheless, there are not any European-wide plans for refarming the GSM bands or for unified introduction of UMTS technology in the GSM bands. So, it is expected that placing UMTS channels within the GSM bands will be various, depending on, among other things, the frequency spectrum mobile operators have.

**The aim of this Technical Arrangement is** to lay down the principles, the technical provisions and administrative procedure necessary to regulate the common deployment of the GSM and the UMTS networks in GSM 900 MHz and GSM 1800 MHz bands in border areas.

The Signatory Authorities have agreed on the following coordination procedures in border areas.

## 2 Principles of coordination

Only the IMT/UMTS usage in the border areas in the GSM 900/1800 MHz bands is regulated in this Technical Arrangement.

The protection of continuing GSM operations with UMTS operations in the same GSM bands is of prime importance.

GSM base stations that are in operation or that will later be put into operation can continue to operate according to the provisions laid down in the relevant bi- or multilateral agreements, arrangements or protocols.

UMTS systems may be operated in a way that the protection of GSM systems be ensured.

Principles of border coordination between GSM and IMT/UMTS systems and between two IMT/UMTS systems used in GSM bands are laid down in ECC/REC/(08)02.

## 3 General technical provisions for IMT/UMTS systems

The frequency bands 880 - 915/925 - 960 MHz and 1710 - 1785/1805 - 1880 MHz may only be used for duplex operation.

Base stations shall transmit in the bands 925-960 MHz and 1805-1880 MHz (downlink bands), and mobile stations shall transmit in the bands 880-915 MHz and 1710-1785 MHz (uplink bands).

The relevant provisions of the bi- or multilateral agreements, arrangements or protocols dealing with frequency coordination in general (e.g. "HCM Agreement") shall be applied unless otherwise laid down in this Technical Arrangement.

# 4 Technical provisions for IMT/UMTS systems in border areas

The frequency coordination situations depending upon technologies applied and negotiations between Signatory Authorities concerned are:

- uncoordinated case of GSM and UMTS usage,
- coordinated case between two UMTS systems.

If it is required by operators that the following provisions may be exceeded or changed, they may conclude an arrangement between operators (hereinafter called "Operator Arrangement") (see Section 6) that should be based on ECC/REC/(08)02.

#### 4.1 Uncoordinated case

This is the case where it is not necessary to examine whether GSM or UMTS system is used in the neighbouring country.

Frequencies of IMT/UMTS base stations may be used if the mean field strength of each carrier produced by a base station does not exceed the following levels in the following bands:

#### a) GSM 900 MHz band (925-960 MHz)

33 dB $\mu$ V/m/5 MHz (trigger value) at a height of 3m above ground at the border line between two neighbouring countries.

#### b) GSM 1800 MHz band (1805-1880 MHz)

39 dBµV/m/5 MHz (trigger value) at a height of 3m above ground at the border line between two neighbouring countries.

## 4.2 Coordinated case between two IMT/UMTS systems in border areas

This is the case where neighbouring operators wish to deploy UMTS networks in a common frequency band in border areas. In this case the following procedure has to be applied:

- a) The operators of neighbouring countries conclude an "Operator Arrangement" based on this Technical Arrangement.
- b) The Draft "Operator Arrangement" shall be sent to the Signatory Authorities concerned for approval.
- c) The Draft "Operator Arrangement" may only enter into force, if the Draft "Operator Arrangement" is approved by all the Signatory Authorities concerned.
- d) If there is no agreement achieved, technical provisions a) and b) of section 4.1 of this Technical Arrangement shall be applied.

The regulation in this section may only be applied if exclusively UMTS systems are used in the neighbouring countries in a certain frequency band and the carrier separation is 2.8 MHz or more between the UMTS and GSM networks used in different countries.

The technical provisions for this coordinated case are given in Annex 1 and the preferential codes in Annex 2.

#### 5 Harmful interference

If harmful interference occurs, in order to check the interference, for field strength line calculations (border line), depending on radio wave propagation paths, the following models should be used:

- The free space attenuation for distances less than or equal to 2 km, and for distances larger than 2 km if there is no terrain obstacle within the 1st Fresnel zone. The calculations shall be carried out between a base station and the receiver points of the borderline in the direction of the interfered area. The reference antenna height of receiver points is 3m above ground.
- "HCM" Agreement" based on a site general method for distances larger than 2km. This model is to be employed for 10% of the time and at 50% of the locations.

As a first step it is necessary to adjust the parameters of base stations, according to the calculation method detailed above.

In the case where harmful interference is still experienced, it is necessary to examine whether the measured field strength exceeds the trigger values defined in section 4. If so, the radiation parameters of the interfering station shall be adjusted until

trigger values are met or mutually accepted solutions shall be reached by all the Signatory Authorities concerned.

## **6** Administrative procedure

Notifications of base stations are not required in general. However, in the case of harmful interference, the data necessary to evaluate and treat harmful interference shall be exchanged between Signatory Authorities concerned.

Each Signatory Authority has to inform the Signatory Authorities concerned about the date of starting the operation, center frequency of the UMTS channels and the name of the operator.

Operators concerned may agree to deviate from the principles, the technical provisions and administrative procedure etc. given in this Technical Arrangement by mutual consent in an "Operator Arrangement".

The "Operator Arrangement" of different countries for GSM and UMTS usage should be based on ECC/REC/(05)08 and ECC/REC/(08)02 and agreed by the Signatory Authorities of relevant countries.

## 7 Review

This Technical Arrangement can be revised in light of administrative, regulatory or technical developments, especially in order to comply with relevant amendments of the bi- or multilateral agreements dealing with frequency coordination in general (e.g. the "HCM Agreement") or CEPT ERC/ECC decisions, recommendations and reports at the proposal of any Signatory Authority with the agreement of all other Signatory Authorities.

In particular, this Technical Arrangement can be revised once technical provisions (modulation, channel spacing, etc) of broad band systems different from UMTS have been clarified, or other countries influencing or interested in the frequency usage laid down in this Technical Arrangement wish to join.

With regard to a new technology different from UMTS, the operators introducing the new technology are responsible for the coexistence study and/or protection values or curves between the used and the new technologies until the relevant ECC Recommendation is available.

#### 8 Withdrawal

Any Authority may withdraw from this Technical Arrangement by the end of a calendar month by giving notice of its intention at least six months in advance. A declaration to that effect shall be addressed to all other Signatory Authorities.

Frequency assignments made within the framework of this Technical Arrangement prior to the date of entry into force of the withdrawal shall remain valid and be protected according to their status.

## **9** Language of the Technical Arrangement

The original text of this Technical Arrangement exists in English in eight originals.

# 10 Date of entry into force of the Technical Arrangement

This Technical Arrangement will enter into force on  $28^{\text{th}}$  October 2010. Done at Budapest,  $28^{\text{th}}$  October 2010.

For Austria	(Florian CZICZATKA)
For Croatia	(Ivančica SAKAL)
For Hungary	(dr. Gáboc KOLLÁTH)
For Romania	Thorgeson (Ingrid GEORGESCU)
For Serbia	(Slavenko RAŠAJSKI M.Sc.E.E.)
For the Slovak Republic	(Igor GROFIK)
For Slovenia	(Martin OČKO)
For Ukraine	(Valerii KAZACHKOV)

#### Annex 1

PRINCIPLES AND COORDINATION FIELD STRENGTH LEVELS FOR THE BORDER COORDINATION BETWEEN: IMT/UMTS (FDD) SYSTEMS IN THE FREQUENCY BANDS 880-915 MHz /925-960 MHz and 1710-1785 MHz /1805-1880 MHz

#### **Code coordination:**

- 1. Frequencies in the bands 925-960 MHz and 1805-1880 MHz for systems using preferential codes, or where centre frequencies are not aligned may be used without coordination with a neighbouring country if the mean field strength of each carrier produced by the base station does not exceed a value of:
  - IMT/UMTS900 (FDD) =>  $59 \text{ dB}\mu\text{V/m/5MHz}$  at a height of 3 m above ground at the borderline between two countries and a value of  $31 \text{ dB}\mu\text{V/m/5MHz}$  at a height of 3 m above ground at a distance of 6 km inside the neighbouring country, in the frequency band 925-960 MHz.
  - IMT/UMTS1800 (FDD) => 65 dBμV/m/5MHz at a height of 3 m above ground at the borderline between two countries and a value of 37 dBμV/m/5MHz at a height of 3 m above ground at a distance of 6 km inside the neighbouring country, in the frequency band 1805-1880 MHz.
- 2. Frequencies in the bands of 925-960 MHz and 1805-1880 MHz for systems using **non preferential codes** and **with centre frequencies aligned** may be used without coordination with a neighbouring country if the mean field strength of each carrier produced by the base station does not exceed a value of:
  - IMT/UMTS900 (FDD) => 31 dBμV/m/5MHz at a height of 3 m above ground at the border line between two countries in the frequency band 925-960 MHz.
  - IMT/UMTS1800 (FDD) => 37 dB $\mu$ V/m/5MHz at a height of 3 m above ground at the border line between two countries in the frequency band 1805-1880 MHz.

Preferential Code ¹	Alignment of centre frequency ²	dBμV/m at km 900 MHz	dBμV/m at km 1800 MHz
Y	Y/N	59 at 0 & 31 at 6	65 at 0 & 37 at 6
Y/N	N	59 at 0 & 31 at 6	65 at 0 & 37 at 6
N	Y	31 at 0	37 at 0

Table A1.1: Summary of field strength levels for the coordination between IMT/UMTS systems at 900 MHz and 1800 MHz

Administrations may agree in bi or multilateral agreements on preferential frequency blocks of 5 MHz. In this case, the trigger values for the coordination between **IMT/UMTS** systems at 900 MHz and 1800 MHz are increased by 10 dB for administrations which are using the preferential frequency blocks. IMT/UMTS systems operating on non-preferential frequencies in the border area must accept interference from services in the neighbouring country using preferential frequencies.

Note for **IMT/**UMTS 900/1800 systems: Administrations have the flexibility to use different values e.g. when re-using existing GSM sites.

¹ For Preferential Codes: Y – "preferential", N – "non-preferential"

² For Alignment of centre frequencies: Y – "aligned",  $\hat{N}$  – "not aligned"

#### Annex 2

#### PREFERENTIAL CODES FOR IMT/UMTS (UTRA FDD)

The code groups defined for the FDD modes have no particular correlation properties and no particular organisation of the repartition is required.

Administrations should agree on a repartition of these code groups on an equitable basis.

In any case, apart from in the border areas, each country could use all code groups.

In border areas, the codes will be divided into 6 "code sets" containing each one sixth of the available code groups. Each country is allocated three code sets (half of the codes) in a bilateral case, and two code sets (one third of the codes) in a trilateral case.

Four types of countries are defined in a way such that no country will use the same code set as any one of its neighbours. The following lists describe the distribution of European countries:

Type country 1: BEL, CVA, CYP, CZE, DNK, E, FIN, GRC, IRL, ISL, LTU, MCO, SMR, SUI, SVN, UKR, AZE, SRB.

Type country 2: AND, BIH, BLR, BUL, D, EST, G, HNG, I, MDA, RUS (Exclave), GEO

Type country 3: ALB, AUT, F, HOL, HRV, POL, POR, ROU, RUS, S, MLT

Type country 4:LIE, LUX, LVA, MKD, MNE, NOR, SVK, TUR.

For each type of country, the following tables and figure describe the sharing of the codes with its neighbouring countries, with the following conventions of writing:

Preferential code
non-preferential code

For the FDD mode; 3GPP TS 25.213 defines 64 « scrambling code groups » in  $\S5.2.3$ , numbered  $\{0...63\}$ , hereafter called « code groups ».

Border 4-3

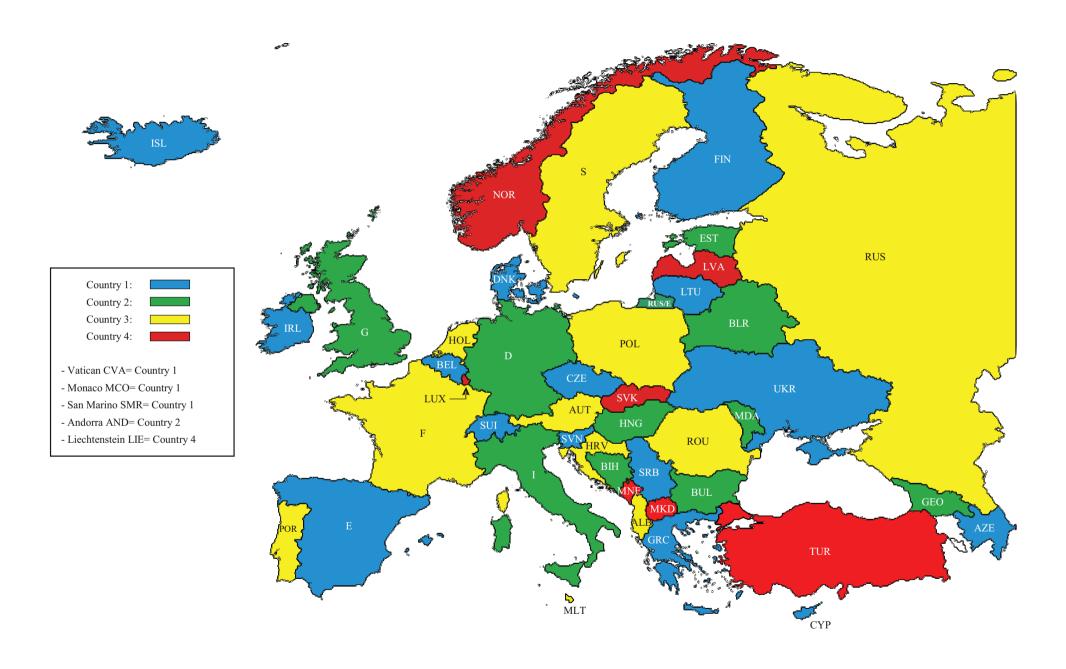
Zone 4-3-1

	Set A	Set B	Set C	Set D	Set E	Set F
Country 1	010	1120	21-31	3242	4352	5363
Border 1-2						
Zone 1-2-3						
Border 1-3						
Zone 1-2-4						
Border 1-4						
Zone 1-3-4						

Border 3-4

Zone 3-2-4

Border 1-4							Border 2-4					
Zone 1-3-4							Zone 2-3-4					
	Set A	Set B	Set C	Set D	Set E	Set F		Set A	Set B	Set C	Set D	Set E
Country 3	010	1120	2131	3242	4352	5363	Country 4	010	1120	2131	3242	4352
Border 3-2							Border 4-1					
Zone 3-1-2							Zone 4-1-2					
Border 3-1							Border 4-2					
Zone 3-1-4							Zone 4-2-3					


	Set A	Set B	Set C	Set D	Set E	Set F
Country 2	010	1120	2131	3242	4352	5363
Border 2-1						
Zone 2-3-1						
Border 2-3						
Zone 2-1-4						
Border 2-4						
Zone 2-3-4					·	

Set F

53..63

#### **Notes**

- 1. All codes are available in areas away from the border where the field strengths into the neighbouring country are below the relevant trigger levels.
- 2. For the other IMT CDMA radio interfaces (IMT-MC, or cdma2000), preferential code allocation schemes are still to be developed.
- 3. A two countries code sharing should be applied or used by base stations that exceed the relevant trigger level (Annex 1) of only one neighbouring country. A three countries code sharing should be applied or used by base stations that exceed the relevant trigger level (Annex 1) of two neighbouring countries.
- 4. In certain specific cases (e.g. AUT/HRV) where the distance between two countries of the same Type number is very small (< few 10s km), it may be necessary to address the situation in bi/multilateral coordination agreements as necessary, and may include further subdivision of the allocated codes in certain areas.



zu den Nutzungsbedingungen im Verfahren betreffend Frequenzzuteilungen in den Frequenzbereichen 800 MHz, 900 MHz und 1800 MHz:

Info über die Koexistenz Mobilfunk - Rundfunk an der Bandgrenze

SCHUTZ DES RUNDFUNKDIENSTES IN BEZUG AUF LTE	1
ALLOTMENTGEBIETE IN ÖSTERREICH IN DEN KANÄLEN 52 BIS 60 (STAND DEZEMBER 2012)	1
LOTMENTGEBIETE IN ÖSTERREICH IN DEN KANÄLEN 52 BIS 60 (STAND DEZEMBER 2012)  B-T  MINDESTNUTZFELDSTÄRKE  BLOCKING  MINDESTNUTZFELDSTÄRKE  CHUTZABSTÄNDE  CHUTZABSTÄNDE  CHUTZABSTÄNDE	6
Mindestnutzfeldstärke	7
SCHUTZABSTÄNDE	8
BLOCKING	10
DVB-T2	10
Mindestnutzfeldstärke	10
SCHUTZABSTÄNDE	11
Blocking	13
MITIGATION TECHNIQUES	14

## Schutz des Rundfunkdienstes in Bezug auf LTE

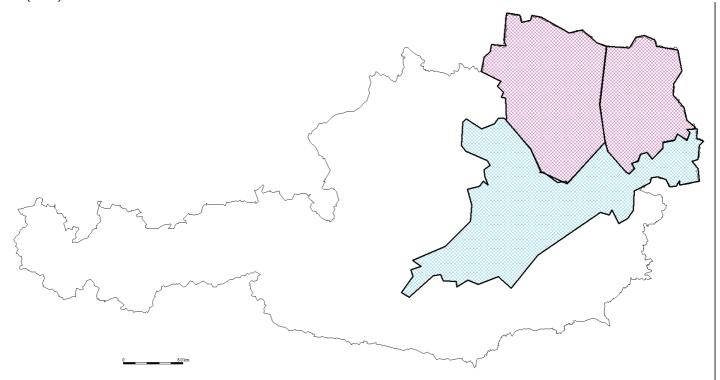
Das Mobilfunksystem LTE (Long Term Evolution) und terrestrisches digitales Fernsehen (DVB-T, DVB-T2) können sich gegenseitig stören.

Die Störwirkung von LTE auf Fernsehempfänger ist umso wahrscheinlicher

- -je näher der Empfänger an einer Mobilfunksendestation betrieben wird
- -je geringer der Frequenzabstand zwischen Fernsehempfangskanal und LTE-Sendekanal ist (Anomalie: N-9)
- -je stärker die Mobilfunksendestation sendet
- -je näher der DVB-T Empfänger an der Empfangsschwelle betrieben wird.

In den internationalen Arbeitsgruppen wurden die Rundfunkkanäle 52 bis 60 untersucht (718-790 MHz, N-9 bis N-1). In diesem Frequenzbereich ist die Störwahrscheinlichkeit am höchsten, innerhalb dieser 9 Fernsehkanäle gilt dies für Kanal 60.

Die folgenden Abschnitte dienen dazu für den Anwendungsfall LTE-Downlink beurteilen zu können ob eine unzulässige Störwirkung von LTE auf Fernsehempfänger vorliegt.


# Allotmentgebiete in Österreich in den Kanälen 52 bis 60 (Stand Dezember 2012)

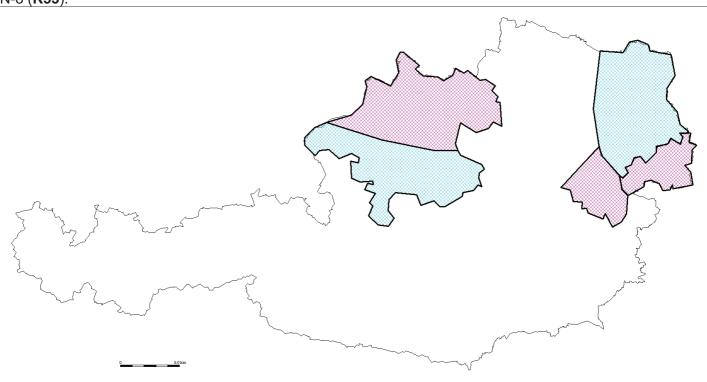
Die im vorigen Abschnitt erwähnten Kanäle sind im Rundfunkabkommen GE06 in folgenden Gebieten für Österreich zugewiesen worden (Offizielle Bezeichnung der Gebiete: Allotment). Diese Gebiete stellen eine Momentaufnahme dar und können in einem internationalen Koordinierungsverfahren gemäß GE06 jederzeit modifiziert werden.

Zum Beispiel wird im Moment das Allotment auf Kanal 52 im Rahmen eines internationalen Koordinierungsverfahrens im Osten Österreichs vergrößert.

Solche Allotment-Neu/Umplanungen sind in den folgenden Bildern in Magenta abgebildet, soweit sie im Moment bekannt sind. Die Planeiträge aus GE06 sind in Blau dargestellt.

## N-9 (**K52**):

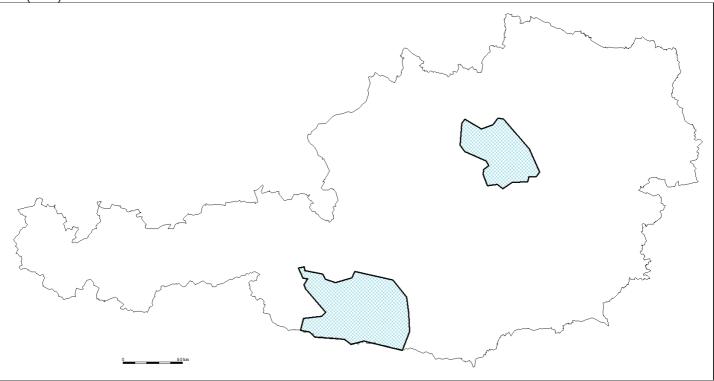



GE06:

Burgenland-Nord Niederösterreich-Mitte-Süd Niederösterreich-West Steiermark-Mitte

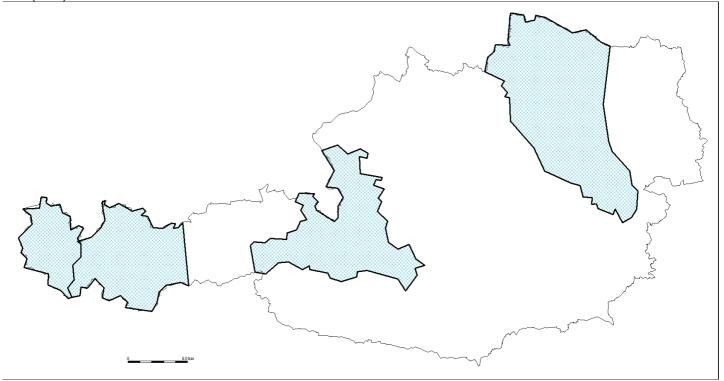
Neu:

Niederösterreich-Mitte-Nord Niederösterreich-Ost


## N-8 (**K53**):

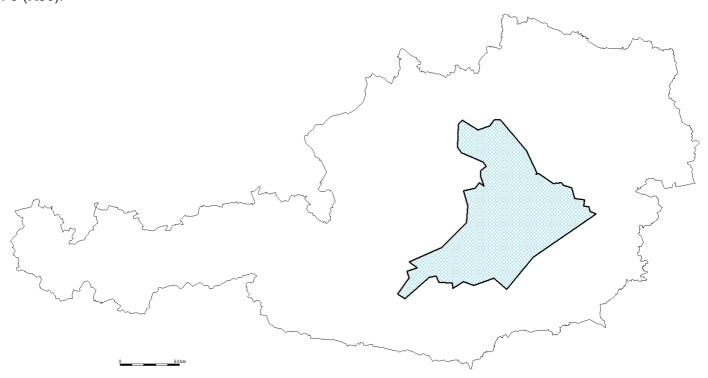


GE06:


Niederösterreich-Ost Oberösterreich-Süd Neu: Oberösterreich-Nord Niederösterreich-Mitte-Süd Burgenland-Nord

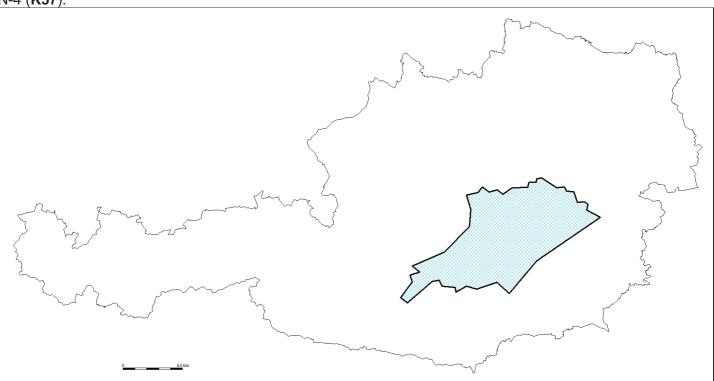
N-7 (**K54**):




GE06: Niederösterreich-West Kärnten-West

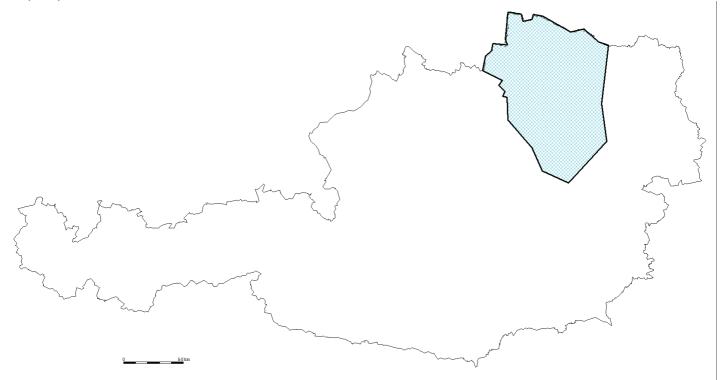
N-6 (**K55**):




GE06: Niederösterreich-Mitte Salzburg Nordtirol-West Vorarlberg

## N-5 (**K56**):

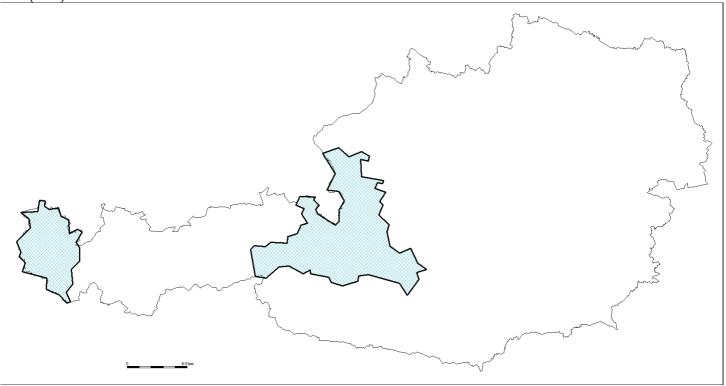



GE06: Niederösterreich-West Steiermark-Mitte

## N-4 (**K57**):

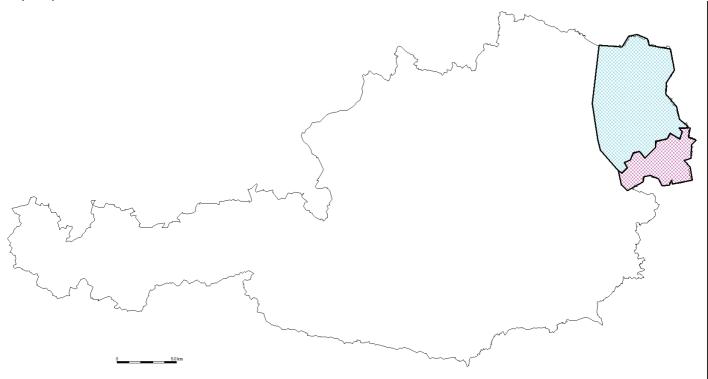


GE06:


N-3 (**K58**):



GE06:


Niederösterreich-Mitte-Nord

N-2 (**K59**):



GE06: Salzburg Vorarlberg

N-1 (**K60**):



GE06:

Niederösterreich-Ost

Neu:

Burgenland-Nord

Die oben gezeigten Bilder stellen eine Momentaufnahme dar. Durch Erweiterungen, Umplanungen, Neuplanungen (national, international) können sich weitere Versorgungsgebiete ergeben, aber es können auch andererseits bestehende Gebiete wieder frei werden. Wenn diese Änderungen einmal Teil des Planes werden, ergeben sich veränderte Versorgungsgebiete, in denen der Rundfunkdienst zu schützen ist.

Diese Allotments können sowohl für DVB-T als auch für DVB-T2 verwendet werden. Der Umstieg von DVB-T auf DVB-T2 könnte in Zukunft großflächige Umplanungen mit sich bringen.

GE06-Assignments sind hier nicht abgebildet. Deren Versorgungsgebiete können vereinzelt in Österreich über die hier gezeigten Allotments hinausragen, welche ebenfalls zu schützen sind, bzw. es kann auch die Notwendigkeit entstehen neue Assignments zu planen und in Betrieb zu nehmen.

#### **DVB-T**

Zurzeit wird in Österreich im Regelbetrieb das digitale Fernsehsystem DVB-T (Digital Video Broadcast – Terrestrial) verwendet. Die konkret verwendeten Rundfunkkanäle sind im Frequenzbuch auf der RTR-Homepage aufgelistet.

#### Mindestnutzfeldstärke

Am DVB-T-Empfängereingang muss eine Mindestnutzleistung vorhanden sein damit Fernsehempfang überhaupt möglich ist. Sie hängt unter anderem ab von der verwendeten Systemtechnik, dem Empfangsmodus, der Trägerfrequenz.

Die folgende Tabelle (Tabelle A.3.2-2, untere Hälfte, GE06) zeigt die Mindestnutzfeldstärke für 500 MHz und verschiedenen Systemvarianten sowie verschiedene Empfangsmodus.

System variants	Modulation	Code rate	MHz	FX	PO	PI	МО
A1, D1	QPSK	1/2	500.0	38.90	64.10	76.10	67.10
A2, D2	QPSK	2/3	500.0	40.90	66.20	78.20	69.20
A3, D3	QPSK	3/4	500.0	42.10	67.50	79.50	70.50
A5, D5	QPSK	5/6	500.0	43.30	68.80	80.80	71.80
A7, D7	QPSK	7/8	500.0	44.30	69.90	81.90	72.90
B1, E1	16-QAM	1/2	500.0	44.60	69.80	81.80	72.80
B2, E2	16-QAM	2/3	500.0	47.10	72.40	84.40	75.40
B3, E3	16-QAM	3/4	500.0	48.70	74.10	86.10	77.10
B5, E5	16-QAM	5/6	500.0	49.90	75.40	87.40	78.40
B7, E7	16-QAM	7/8	500.0	50.50	76.10	88.10	79.10
C1, F1	64-QAM	1/2	500.0	50.20	75.40	87.40	78.40
C2, F2	64-QAM	2/3	500.0	52.50	77.80	89.80	80.80
C3, F3	64-QAM	3/4	500.0	54.20	79.60	91.60	82.60
C5, F5	64-QAM	5/6	500.0	55.70	81.20	93.20	84.20
C7, F7	64-QAM	7/8	500.0	56.70	82.30	94.30	85.30

Die Mindestnutzfeldstärke ist in den letzten vier Spalten für die vier Empfangsarten fixed (FX), portable outdoor (PO), portable indoor (PI) und mobile (MO) dargestellt. Bei MO wird am meisten, bei FX am wenigsten Mindestnutzfeldstärke benötigt.

Für alle anderen Frequenzen im UHF-Bereich erfolgt die Umrechnung gemäß folgender Formel (Frequenzkorrektur, GE06):

Emed(f) = Emed(500 MHz) + Corrfixed: Corr = 20*log10(f/500MHz)

portable outdoor: Corr = 30*log10(f/500MHz)

Darüber hinaus gilt für jede Empfangsart: Je höherwertiger eine Modulation (in aufsteigender Reihenfolge: QPSK, 16-QAM, 64-QAM) und je größer der Wert Coderate desto mehr Mindestnutzfeldstärke am DVB-T Empfängereingang wird benötigt.

#### Schutzabstände

Treten Störsignale hinzu muss für die Beurteilung ob eine tatsächliche Störung vorliegt zusätzlich zur Mindestnutzfeldstärke der Schutzabstand mit berücksichtigt werden.

Die Summe der Störsignale muss dabei kleiner sein als die Mindestnutzfeldstärke minus dem Schutzabstand.

Der Schutzabstand für Nachbarkanalstörungen ist im Abkommen GE06 mit -30 dB angegeben. (GE06, Tabelle A.3.3-2). Dies bedeutet dass die Summe der Störsignale 30 dB größer als das Nutzsignal sein dürfen ohne dass es beim Empfang des Fernsehsignals zu Störungen kommt.

Im ECC Report 148 wurde der Schutzabstand für Nachbarkanalstörungen (bis hin zu N-9) für verschiedene Empfänger gemessen. Die dort ermittelten Werte schwanken zwischen -33dB und -71 dB.

Die Messungen wurden für 5 MHz und 10 MHz LTE-Signalbandbreite durchgeführt. Bei der LTE-Basisstation als Störer hat die LTE-Signalbandbreite wenig Einfluss auf die Schutzabstände. Die gemessenen Abweichungen lagen fast immer innerhalb -+ 1 dB (Annex F ECC Report 148).

Tabelle 5a (ECC Report 148) zeigt die gemessenen Schutzabstände im Gausskanal für die Systemtechnik C2 (64-QAM, Coderate 2/3).

				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	M 2/3 DVB- it Average Po	27				
Channel PR (dB)										
edge		10 th			50th		"	90th		
separation (MHz)	Can STB/iDTV	Silicon STB/iDTV	Silicon USB	Can STB/iDTV	Silicon STB/iDTV	Silicon USB	Can STB/iDTV	Silicon STB/iDTV	Silicon USB	
1	-43	-43	-42	-39	-37	-37	-33	-33	-33	
9	-48	-46	-49	-46	-44	-45	-42	-40	-36	
17	-51	-50	-48	-48	-46	-45	-39	-44	-36	
25	-59	-54	-50	-58	-50	-46	-56	-48	-38	
33	-66	-55	-49	-64	-51	-47	-63	-49	-42	
41	-68	-56	-50	-59	-52	-46	-58	-50	-43	
49	-70	-57	-51	-67	-53	-48	-66	-50	-43	
57	-71	-58	-52	-68	-53	-48	-66	-51	-43	
65	-57	-61	-50	-46	-52	-46	-39	-45	-44	

Table 5a: DVB-T PR values in the presence of a time-constant LTE BS interfering signal in a Gaussian channel environment at the 10th, 50th and 90th percentile: comparison between can-tuners and silicon-tuners.⁴

Die Abkürzung STB in Tabelle 5a steht für "Set Top Box", iDTV steht für ein Fernsehgerät mit integriertem Empfänger, USB steht für einen Empfänger, der in einem USB-Stick eingebaut ist und zur Verwendung an Computern dient.

Can Tuner: Hier handelt es sich um einen in ein Metallgehäuse eingebauten Empfängertyp aufgebaut aus diskreten Bauelementen. Bezüglich Übersprechen, Intermodulation oder Streuausbreitung sind diese Empfänger meist sehr gut aber auch relativ teuer.

Silicon: Diese Empfänger sind überwiegend aus integrierten Schaltungen aufgebaut. Siliconempfänger werden ständig weiterentwickelt. (ECC Report 148, Seite 6).

Die Umrechnung auf jede beliebige Systemvariante (GE06) erfolgt gemäß Tabelle 4, Report 148. Betrachtet man beispielsweise die MUX-A Systemvariante 16-QAM ¾ mit Dachempfang, dann muss der Wert -2.7 zum gewählten Wert aus Tabelle 5a addiert werden.

Um 90 % der Empfänger zu schützen muss bei "Schutzabstand" die Spalte "90th percentile" gewählt werden.

DVB-T system variant	Gaussian channel	Fixed reception	Portable outdoor reception	Portable indoor reception	Mobile reception	
QPSK 1/2	-13.5	-12,5	-12.5 -10.3		-7.3	
QPSK 2/3	-11.6	-10.5	-8.2	-8.2	-5.2	
QPSK 3/4	-10.5	-9.3	-6.9	-6.9	-3.9	
QPSK 5/6	-9.4	-8.1	-5.6	-5.6	-2.6	
QPSK 7/8	-8.5	-7.1	7.1 -4.5 -4.5		-1.5	
16-QAM 1/2	-7.8	-6.8	-3.6	-3.6	-0.6	
16-QAM 2/3	-5.4	-4.3	-2.0	-2.0	1.0	
16-QAM 3/4	-3.9	-2.7	-0.3	-0.3	2.7	
16-QAM 5/6	-2.8	-1.5	1.0	1.0	4.0	
16-QAM 7/8	-2.3	-0.9	1.7	1.7	4.7	
64-QAM 1/2	-2.2	-1.2	1.0	1.0	4.0	
64-QAM 2/3	0.0	1.1	3.4	3.4	6.4	
64-QAM 3/4	-QAM 3/4 1.6 2.8		5.2	5.2	8.2	
64-QAM 5/6	3.0	4.3	6.8	6,8	9.8	
64-QAM 7/8	3.9	5.3	7.9 7.9		10.9	

Note: Measurements of IMT BS interference into DVB-T reception for Gaussian and time-variant Rayleigh channels indicate that the correction factors of Table 4 for mobile reception are more appropriate also for portable reception than those given in Table 4 for portable reception. It is therefore recommended to use the correction factors for mobile reception for both portable and mobile reception.

Table 4: Correction factors for protection ratios (dB) for different system variants relative to 64-QAM 2/3

DVB-T signal and for different reception conditions interfered with by other primary services

Ist die Bitfehlerrate größer als 2*10⁴ (gemessen nach dem Viterbi- Decoder) spricht man von einer bereits vorhandenen Störwirkung. Beobachten von Fehlern im Fernsehbild (Pixelfehler, Klötzchen Bildung) ist gängige Praxis.

## **Blocking**

Bei zu hohen Eingangspegeln am DVB-T Empfänger kommt es zum "Blocking", das Fernsehbild friert ein.

Tabelle 5a (CEPT Report 148) zeigt die gemessenen Leistungen am Empfängereingang ab denen "Blocking" auftritt.

					M 2/3 DVB- t Average Po				
Channel				,,==	Oth (dBm)	100			
edge		90 th			50th		1	10th	
separation (MHz)	Can STB/iDTV	Silicon STB/iDTV	Silicon USB	Can STB/iDTV	Silicon STB/iDTV	Silicon USB	Can STB/iDTV	Silicon STB/iDTV	Silicon USB
1	-1	-2	-3	-9	-8	-17	-13	-13	-26
9	3	4	0	-3	-1	-13	-8	-7	-22
17	4	7	0	-2	2	=7	-19	-6	-18
25	1	8	0	-8	4	-6	-13	-6	-14
33	1	6	0	-4	4	-5	-8	-6	-14
41	7	8	0	-2	3	25	-6	-5	-14
49	9	5	0	0	1	-5	-5	-4	-14
57	9	5	0	1	1	-3	-5	-4	-13
65	8	6	0	2	2	-11	-3	-6	-16

Table 5b: DVB-T Oth values in the presence of a time-constant LTE BS interfering signal in a Gaussian channel environment at the 10th, 50th and 90th percentile: comparison between can-tuners and silicon-tuners.

Der Störeffekt "Blocking" tritt bei hohen Leistungspegeln am Eingang des Empfängers auf. Er dominiert dann und ist relativ unabhängig vom Empfängertyp und von der Empfangsfrequenz.

Um 90 % der Empfänger zu schützen muss bei "Blocking" die Spalte "10th percentile" gewählt werden. (ECC Report 148 Note5, Kapitel 5).

#### DVB-T2

Seit Ende 2012 gibt es in Wien auf den Kanälen 53 und 60 einen DVB-T2-Testbetrieb. Im Laufe des Jahres 2013 ist der Beginn des Regelbetriebes geplant.

Bei DVB-T2 (Zweite Generation digitales terrestrisches Fernsehen, nicht abwärtskompatibel zu DVB-T) kommen gegenüber DVB-T neue Systemparameter hinzu. Die Anzahl der möglichen Systemkonfigurationen steigt dadurch deutlich an.

Höherwertige Modulationsverfahren (256-QAM), größere FFT-Längen, längere (und kürzere) Schutzintervalle, effizientere aber rechenintensivere Kanalkodierungsverfahren, "Rotated Constellation Diagrams", "Physical Layer Pipes", MISO- und MIMO Technologien, zusätzlich verwendbare Systembandbreiten sind wesentliche Beispiele der Neuerungen bei DVB-T2 gegenüber DVB-T.

### Mindestnutzfeldstärke

Die folgende Tabelle (EBU Tech 3348) zeigt Mindestnutzfeldstärken für einige ausgewählte Konfigurationen bei der Mittenfrequenz 650 MHz. Die konkreten Werte aus dieser Tabelle der EBU (European Broadcast Union) bedürfen noch der endgültigen Abstimmung in den internationalen Gremien. Jedenfalls geben sie einen guten Hinweis auf die zu erwarteten Größenordnungen. Aller Voraussicht nach wird sich an diesen Werten nicht mehr viel ändern.

3.3.2 DVB-T2 in Band IV/V			Fixed	Portable outdoor/urban	Portable Indoor/urban	Mobile/rural	Handheld portable autdoor	Handheld mobile Class H-D/ Integrated antenna
Frequency	Freq	MHz	650	650	650	650	650	650
Winimum E/N required by system*	C/N	dB	18.9	17.1	37.3	9.4	12.3	9
System variant (example)			256-QAM FEC 2/3, 32k, PP7 Extended	64-QAM FEC 2/3, 32k. PP3 Extended	64-QAM FEC 2/3, 16k, PP3 Extended	16-QAM FEC 1/2, 8k, PP2 Extended	16-QAW FEC 2/3, 16k, PP3 Extended	16-QAM FEC 1/2, 8k, PP3 Extended
Bit rate (indicative values)		Mbit/s	33-40	23-29	23-29	11-13	15-19	12-14
Receiver Noise Figure	F	dB	6	6	6	6	6	6
Equivalent noise band width	8	MHz	7.77	7.77	7.77	7,71	7.77	7.71
Receiver noise input power	Pn	dBW	+129.1	-129,1	-129.1	-129.1	-129.1	-129.1
Vin. receiver signal input power	Ps min	d8W	-110.2	-112.0	-112.0	-119,7	-116.8	+120.1
Win. equivalent receiver liquit voltage, 75 ohm	Umin	dBpV	28.6	26.8	26.8	19.0	22.0	18.6
Feeder lass	Lf	dB	4	0	0	0	0	0
Antenda gain relative to half dipole	Gd	dB	111	0	0	0	-9.5	-9.5
Effective antenna aperture	Aa	dBm ²	-4.6	-15,6	-15.6	-15.6	-25.1	-25.1
Vin Power Rux density at receiving location	Omín	d8(W)/m ²	101.6	96.4	96.4	104.1	-91.7	-95.0
We equivalent field strength at receiving location	Emin	dBµV/m	44.2	49.4	49.4	41.7	54.1	50.8
Allowance for man-made noise	Pmmn	dB	0	1	1	0	0	0
Penetration loss (building or vehicle)	Lb, Lh	dB	0	0	-11	0	0	8
Standard deviation of the penetration loss		dB	0	0	6	0	0	2
Diversity gain	Divi	dB	0	0	000	0	0	0
ocasion probability	7	X.	70	78	78	.90	70	90
Distribution factor			0.5244	0.5244	0.5244	1.28	0.5244	1.28
Standard deviation			5.5	5.5	8.1	5.5	5.5	5.9
ocation correction factor	Cl	dB	2.8842	2.8842	4.24764	7.04	2.8842	7.552
Ministrum median power flux density at reception scriptify SOX time and SOX tocations	omed	dB(W)/m ²	-98.7	-92.5	-80.2	-97.1	-88.8	-79.5
Winimum median equivalent field strength at ecoption height'; 50% time and 50% locations	Emed_1.5m	d8yV/m	47.1	53.3	65.6	48.7	57.0	66.3
ocation probability			95	95	95	99	95	99
Distribution factor			1,6449	1.6449	1.6449	2.3263	1.6449	2.3263
itandard deviation			5.5	5.5	8.1	5.5	5.5	5.9
ocation correction factor	Cl	dB.	9.04695	9.04695	13.32369	12.79465	9.04695	13.72517
Animum median power flux density at reception leight"; 50% time and 50% locations	Omed	d8(W)/m ²	-92.6	-86.4	-21,1	-91.4	-82.7	-73.3
Minimum median equivalent field strength reception height": 50% time and 50% locations	Emed_1.5m	dBuV/m	53.2	59.4	74.7	54.4	63.1	72.5

Im Bericht ITU BT.2254 finden sich C/N Werte für weitere DVB-T2-Varianten. Die Berechnung der Mindestnutzfeldstärke für diese DVB-T2-Varianten erfolgt entsprechend den Schritten wie sie in der abgebildeten Tabelle gezeigt werden.

### Schutzabstände

Mittlerweile gibt es den international abgestimmten Bericht ITU-R BT.2254, in welchem Schutzabstände für DVB-T2 enthalten sind.

Allerdings sind in der für den Schutz des terrestrischen Fernsehens maßgeblichen Recommendation ITU-R BT.1368-9 in der aktuell gültigen Fassung noch keine Schutzabstände für DVB-T2 enthalten. Eine Revision dieser Recommendation, um die DVB-T2 Schutzabstände aufzunehmen, ist in Arbeit.

In der nachfolgenden Tabelle sind Schutzabstände aus dem Bericht ITU-R BT.2254 ( DVB-T2 gegenüber LTE ,downlink) abgebildet.

TABLE 3.5

Protection ratios (dB) for a DVB-T2 signal interfered with by an LTE BS signal in adjacent channels (from [WP6A-619])

Channel offset N	Centre	0% BS Traffic loading Percentile		50% BS Traffic loading Percentile			100% BS Traffic loading Percentile			
(8 MHz Channels)	frequency offset (MHz)									
		10 th	50 th	90th	10 th	50 th	90th	10 th	50th	90 th
1	10	-45	-27	-21	-43	-39	-38	-42	-36	-36
2	18	-56	-40	-29	-53	-48	-46	-51	-47	-45
3	26	-55	-46	-33	-50	-48	-44	-50	-48	-43
4	34	-57	-46	-37	-53	-51	-46	-51	-49	-45
5	42	-61	-53	-39	-59	-51	-49	-59	-51	-48
6	50	-62	-55	-44	-61	-53	-50	-60	-52	-49
7	58	-64	-56	-45	-62	-55	-52	-61	-54	-51
8	66	-65	-57	-46	-62	-55	-53	-61	-54	-52
9	74	-61	-58	-48	-58	-55	-51	-57	-53	-50

Die Schutzabstände in diesem Dokument sind in Abhängigkeit des Zeitverhaltens des LTE-Signales angegeben ("Traffic loading"). Eine Darstellung in Abhängigkeit der verschiedenen Empfängertypen, wie das bei DVB-T üblich ist, entfällt hier.

Für die Ermittlung der Werte dieser Tabelle wurde das folgende Referenzsystem verwendet (Gausskanal):

## Rep. ITU-R BT.2254

TABLE 3.3

Reference DVB-T2 mode for measurements on protection ratios

Overall	Parameter value
FFT Size	32k
Bandwidth	8 MHz
Extended bandwidth mode	Yes
Pilot pattern	PP7
Modulation	256-QAM
Rate	2/3
FEC type	64800
Rotated QAM	Yes
C/N (AWGN Channel) (dB)	19.7
Data rate (Mbit/s)	40.2

Um die Schutzabstände für ein in der Praxis eingesetztes DVB-T2 System zu ermitteln muss der C/N-Wert dieses Systems mit dem C/N Wert des Referenzsystems verglichen werden. Die Differenz wir mit dem Schutzabstand des Referenzsystems gegengerechnet. Für die Ermittlung des C/N-Wertes des in der Praxis

eingesetzten DVB-T2 Systems dient die folgende Tabelle. Sie ist ebenfalls entnommen aus dem Bericht ITU-R BT.2254 und enthält einen Teil der möglichen Systemparameter.

TABLE 2.14 C/N QEF valid for DVB-T2 PP2 32k normal BW GI 1/8

Constellati on	Code rate	Gaussian raw values (Table 2.9)	C/N _{Gauss}	CINE	C/N _{Rayleigh} (static)	0 dB echo channel @ 90% GI
QPSK	1/2	1.0	3.5	3.7	4.5	5.2
QPSK	3/5	2.2	4.7	4.9	6.0	6.8
QPSK	2/3.	3.1	5.6	5.9	7.4	8.4
QPSK	3/4	4.1	6.6	6.9	8.7	9.8
QPSK	4/5	4.7	7.2	7.5	9.6	10.9
QPSK	5/6	5.2	7,7	8.1	10.4	12.0
16-QAM	1/2	6.2	8.7	8.9	10.2	10.9
16-QAM	3/5	7.6	10.1	10.3	11.8	12,7
16-QAM	2/3	8.9	11.4	11.6	13.3	14.4
16-QAM	3/4	10.0	12.5	12.9	15.0	16.3
16-QAM	4/5	10.8	13.3	13.8	16.2	17.8
16-QAM	5/6	11.3	13.9	14.4	17.0	19.0
64-QAM	1/2	10.5	13.0	13.3	15.1	16.0
64-QAM	3/5	12.3	14.9	15.2	16.9	18.0
64-QAM	2/3	13.6	16.2	16.5	18.3	19.7
64-QAM	3/4	15.1	17.7	18.0	20.4	22.0
64-QAM	4/5	16.1	18.8	19.3	22.0	24.0
64-QAM	5/6	16.7	19.4	19.8	23.0	25.5
256-QAM	1/2	14.4	17.0	17.4	19.5	20.6
256-QAM	3/5	16.7	19.4	19.6	21.7	23.1
256-QAM	2/3	18.1	20.9	21.2	23.3	25.2
256-QAM	3/4	20.0	22.9	23.2	25.8	28.0
256-QAM	4/5	21.3	24.48	24.8	27,8	30.9
256-QAM	5/6	22.0	25.2	25.6	29.3	33.6

## **Blocking**

In der ITU BT.2254 ist auch eine Tabelle für das Beurteilen des Blocking-Effektes enthalten (Tabelle 3.7):

TABLE 3.7

Overload thresholds (dBm) for a DVB-T2 signal interfered with by an LTE BS signal in adjacent channels (from [WP6A-619])

Channel offset $N$	Centre frequency	0% BS Traffic loading		50% BS Traffic loading Oth (dBm)			100% BS Traffic loading Oth (dBm)			
(8 MHz Channels)	offset (MHz)	Oth (dBm)								
/		10 th	50th	90 th	10 th	50 th	90 th	10 th	50th	9011
1	10	-23	-12	-5	-14	-7	0	-15	-8	0
2	18	-16	0	5	-9	-2	2	-9	-3	1
3	26	-16	-1	8	-9	-2	5	-8	-3	4
4	34	-15	1	9	-13	-2	6	-8	-2	5
5	42	-16	4	9	-8	2	6	-8	2	5
6	50	-16	5	10	-8	5	6	-8	4	5
7	58	-16	5	10	-7	1	7	-8	5	6
8	66	-17	5	10	-8	1	6	-8	4	5
9	74	-16	5	10	-8	. 5	6	-8	4	5

Hier steht allerdings im Begleittext dass diese Werte als "preliminary" anzusehen sind. Um die endgültigen Werte festlegen zu können sind weitere Messungen erforderlich.

## **Mitigation Techniques**

Kommt es zu Störungen können folgende Maßnahmen Abhilfe schaffen:

- Einbau von Eingangsfiltern am DVB-T Empfänger (Dämpfen der Kanäle >60); die Filter können in neueren Geräten bereits eingebaut sein, man kann die Filter aber auch nachträglich montieren, beispielsweise direkt an der Empfängereingangsbuchse.
- Verringerung der Nebenaussendungen bei den LTE-Sendern (Filter auf der Senderseite)
- Änderung der Ausrichtung der Empfangsantenne
- Änderung der Polarisation der Sendeantenne an der Basisstation
- Verringerung der Sendeleistung eines Sektors der Basisstation
- Erhöhung der Nutzleistung (Gleichkanalumsetzer, Gap-Filler)

zu den Nutzungsbedingungen im Verfahren betreffend Frequenzzuteilungen in den Frequenzbereichen 800 MHz, 900 MHz und 1800 MHz:

Entwurf der Funkschnittstellenbeschreibung FSB-LM027

Österi (Aust		Funk-Schnittstellenbeschreibung (Radio Interface Specification)	Funk-Systeme	FSB-LM027	Entwurf 06.12.2011	
	Nr	Parameter	Beschreibung (Description)	Bemerkungen (Comments)		
	1	Funkdienst (Radiocommunication Service)	Beweglicher und Fester Funkdienst			
	2	Verwendungszweck / Anwendung (Application)	Terrestrische Systeme, die europaweite elektronische Kommunikationsdienste erbringen können	für Basisstationen und Repeater		
part)	3	Frequenzband (Frequency band)	880,0 MHz - 915,0 MHz 925,0 MHz - 960,0 MHz			
Normativer Teil (Normative part)	4	Kanalbelegung (Channelling)	5MHz, 10MHz, 15MHz, 20MHz			
(Norn	5	Modulation / belegte Bandbreite (Modulation / Occupied bandwidth)				
r Teil	6	Richtung / Paarfrequenzabstand (Direction / Separation)				
native	7	Sendeleistung / Leistungsdichte (Transmit power / Power density)	+64 dBm/5MHz e.i.r.p	maximal blockinterno	e Strahlungsleistung	
Norm	8	Kanalzugangs- und Belegungsvorschriften (Channeling access and occupation rules)				
	9	Genehmigungsverfahren (Authorisation regime)	Individuelle Bewilligung			
	10	Wesentliche Zusatzanforderungen (Additional essential requirements)	Entscheidung 2009/766/EG der Europäischen Kommission in der Fassung des Durchführungsbeschlusses 2011/251/EU			
	11	Frequenzplanungsannahmen (Frequency planning assumptions)	ECC/DEC/(06)13; ECC/REC/(08)02; CEPT-Report 40; CEPT-Report 41; CEPT-Report 42			
	12	Vorgesehene Änderungen (Planned changes)				
Teil part)	13	Referenzen (Reference)	EN 301 908-1,EN 301 908-2, EN 301 908-3, EN 301 908-11			
ativer native	14	Notifikationsnummer (Notification number)	2012/xxx/A			
Informativer 7 (Informative p	15	Anmerkungen (Remarks)				

zu den Nutzungsbedingungen im Verfahren betreffend Frequenzzuteilungen in den Frequenzbereichen 800 MHz, 900 MHz und 1800 MHz:

Entwurf der Funkschnittstellenbeschreibung FSB-LM028

Österi (Ausi		Funk-Schnittstellenbeschreibung (Radio Interface Specification)	Funk-Systeme	FSB-LM028	Entwurf 06.12.2011	
	Nr	Parameter	Beschreibung (Description)	Bemerkungen (Comments)		
	1	Funkdienst (Radiocommunication Service)	Beweglicher und Fester Funkdienst			
	2	Verwendungszweck / Anwendung (Application)	Terrestrische Systeme, die europaweite elektronische Kommunikationsdienste erbringen können	für Basisstationen und Repeater		
part)	3	Frequenzband (Frequency band)	1710,0 MHz - 1785,0 MHz 1805,0 MHz - 1880,0 MHz			
Normativer Teil (Normative part)	4	Kanalbelegung (Channelling)	5MHz, 10MHz, 15MHz, 20MHz			
(Norn	5	Modulation / belegte Bandbreite (Modulation / Occupied bandwidth)				
r Teil	6	Richtung / Paarfrequenzabstand (Direction / Separation)				
ative	7	Sendeleistung / Leistungsdichte (Transmit power / Power density)	+64 dBm/5MHz e.i.r.p	maximal blockinterno	e Strahlungsleistung	
Norn	8	Kanalzugangs- und Belegungsvorschriften (Channeling access and occupation rules)				
	9	Genehmigungsverfahren (Authorisation regime)	Individuelle Bewilligung			
	10	Wesentliche Zusatzanforderungen (Additional essential requirements)	Entscheidung 2009/766/EG der Europäischen Kommission in der Fassung des Durchführungsbeschlusses 2011/251/EU			
	11	Frequenzplanungsannahmen (Frequency planning assumptions)	ECC/DEC/(06)13; ECC/REC/(08)02; CEPT-Report 40; CEPT-Report 41; CEPT-Report 42			
	12	Vorgesehene Änderungen (Planned changes)				
Teil part)	13	Referenzen (Reference)	EN 301 908-1, EN 301 908-2, EN 301 908-3, EN 301 908-11			
Informativer Teil (Informative part)	14	Notifikationsnummer (Notification number)	2012/xxx/A			
nforma nform	15	Anmerkungen (Remarks)				

zu den Nutzungsbedingungen im Verfahren betreffend Frequenzzuteilungen in den Frequenzbereichen 800 MHz, 900 MHz und 1800 MHz:

Entwurf der Funkschnittstellenbeschreibung FSB-LM029

Öster (Aus		Funk-Schnittstellenbeschreibung (Radio Interface Specification)	Funk-Systeme	FSB-LM029	Entwurf 06.12.2011	
·	Nr	Parameter	Beschreibung (Description)	Bemerkungen (Comments)		
	1	Funkdienst (Radiocommunication Service)	Beweglicher Funkdienst außer beweglicher Flugfunk			
	2	Verwendungszweck / Anwendung (Application)	Terrestrische Systeme, die elektronische Kommunikationsdienste erbringen können	für Basisstationen und Repeater		
art)	3	Frequenzband (Frequency band)	791,0 MHz - 821,0 MHz 832,0 MHz - 862,0 MHz			
tive p	4	Kanalbelegung (Channelling)	5MHz, 10MHz, 15MHz, 20MHz			
lorma	5	Modulation / belegte Bandbreite (Modulation / Occupied bandwidth)				
eil (N	6	Richtung / Paarfrequenzabstand (Direction / Separation)				
iver T	7	Sendeleistung / Leistungsdichte (Transmit power / Power density)	+64 dBm/5MHz e.i.r.p	maximale blockinterr	ne Strahlungsleistung	
Normativer Teil (Normative part)	8	Kanalzugangs- und Belegungsvorschriften (Channeling access and occupation rules)				
	9	Genehmigungsverfahren (Authorisation regime)	Individuelle Bewilligung			
	10	Wesentliche Zusatzanforderungen (Additional essential requirements)	Entscheidung 2010/267/EU der Europäischen Kommission			
	11	Frequenzplanungsannahmen (Frequency planning assumptions)	ECC/DEC/(09)03; CEPT Report 30; CEPT Report 31			
	12	Vorgesehene Änderungen (Planned changes)				
- Teil part)	13	Referenzen (Reference)	EN 301 908-14, EN 301 908-15, EN 301 908-17, EN 301 908-18			
<b>ativer</b> native	14	Notifikationsnummer (Notification number)	2012/xxx/A			
Informativer 7 (Informative p	15	Anmerkungen (Remarks)				