
TlS
SECURITY aspects

RTR Workshop 05.11.2015
A-sit Plus GMBH
dr. Peter Teufl

IAIK

Crypto crash course

Asymmetric cryptography: encryption, decryption

Public Key

Private Key

Plain data Encrypted
Data

This key is really public, everyone can and should have it!

This key is really private, only the owner should have it!

Encrypt
(everybody!)

Plain data

Decrypt
(only key owner!)

To be precise

Data is typically not encrypted/decrypted with the asymmetric keys

Symmetric keys are used for that

Only the symmetric keys are encrypted/decrypted with the asymmetric
ones (due to performance, security (block mode))

Example for RSA…

IAIK

Crypto crash course
Asymmetric cryptography: signing, verification

Public Key

Private Key

Plain data

Plain data

Hash

Calc Hash (e.g. SHA-256)

Signed Hash

Sign (encrypt)
(only key owner!)

Hash

Signed Hash

Calc Hash (e.g. SHA-256)

Verify (decrypt)
(everybody!)

Hash

Compare

Everybody must be able to do that!

To be precise:

Not the complete data is signed verified (same issues as with encryption)

BUT, a short hash (e.g. 256 bit) is calculated and that is signed/verified

Compare with thoughts on encryption in previous slide

Example for RSA…

IAIK

Asymmetric cryptography: key agreement (for en/decryption)

Public Key

Private Key

Public Key

Private Key

User 1 (e.g. web browser) User 2 (e.g. web server)

agree on symmetric key with user 1 private key and user 2 public key

Public Key

Private Key

Public Key

Private Key

ECDH/DH

symmetric
key

agree on symmetric key with user 1 private key and user 2 public key

Public Key

Private Key

Public Key

Private Key

ECDH/DH

symmetric
key

Exchange public keys (everyone can have them)

We need Trust though! (TLS handshake later…)

the same symmetric key is generated
(only user 1/2 can generate those keys)

use for encryption/decryptionCrypto Crash Course

IAIK

Public Key

Private Key Host

X509 Certificate of Host

Issuer: super secure TLS CA

Subject: secure.example.com

Cert hash

Signature

PUBLIC

PRIVATE
(securely stored on web server)

Public Key

Private Key CA

X509 Certificate of Certificate Authority

Issuer: self issued

Subject: super secure TLS CA

Cert hash

Signature (self signed)

PUBLIC

PRIVATE
(securely stored by CA)

Trust Store
Browser/Operating System

https://secure.example.com

Public Key

Certificate of
super secure TLS CA

Certificate of
secure.example.com

Public Key

Signature (2) verify
signature

Web Browser

(1) verify
host name

Get host certificate during TLS hand shake

Crypto Crash Course 
X509 Certificates

IAIK

Topics
Crypto Crash Course

TLS details

Handshake and how to achieve confidentiality, integrity, authenticity

Client TLS

Cipher suites, Perfect Forward Secrecy

HSTS, Certificate Pinning

Attacks

Trust

Heartbleed

SSLStrip

Flame

IAIK

Transport Layer Security (TLS)
Perfect overview on WikiPedia (history, browser support etc.)

http://en.wikipedia.org/wiki/Transport_Layer_Security

ECC cipher suites: http://tools.ietf.org/html/rfc4492  
(ECDH, ECDHE example)

TLS 1.2: http://www.ietf.org/rfc/rfc5246.txt (RSA example)

Key protocol for secure communication

HTTPS, VPNs, for any secure communication

Initial development by Netscape in the 90s.

First public release SSL 2.0 in 1995 (critical sec flaws!)

http://en.wikipedia.org/wiki/Transport_Layer_Security
http://tools.ietf.org/html/rfc4492
http://www.ietf.org/rfc/rfc5246.txt

IAIK

Transport Layer Security (TLS)
SSL 3.0 in 1996, RFC 6101

TLS 1.0 in 1999, RFC 2246

No significant changes when compared to SSL 3.0

downgrade option to SSL 3.0

TLS 1.1 in 2006, RFC 4346

Security fixes

TLS 1.2 in 2008, RFC 5246, old cipher suites removed, bugfixes

TLS 1.3, Draft, April 2015 (drop insecure/problematic features)

IAIKIAIK

TLS - Protocol - Basic Steps

Certificate from
client

Certificate
required from

client

Certain cipher
suites

Certificate of
server.

Standard HTTPS
scenario

source: http://tools.ietf.org/html/rfc5246

Client TLS/SSL

http://tools.ietf.org/html/rfc5246

IAIKIAIK

ClientHello (Client)

TLS version

Random number

List of suggested 
cipher suites

Compression
methods

Session ID  
 if resumed

IAIKIAIK

ClientHello - CipherSuites

CipherSuites

IAIKIAIK

ClientHello - CipherSuites
Structure

[SSL|TLS], [key exchange], [authentication], [bulk cipher], [message
auth]

Examples

TLS_RSA_WITH_AES_128_CBC_SHA (TLS, RSA, RSA, AES 128 CBC, SHA)

TLS_ECDHE_RSA_WITH_RC4_128_SHA (TLS, ECDHE, RSA, RC4 128,
SHA)

Many possible cryptographic protocols for key exchange, encryption,
authentication, message integrity

IAIKIAIK

ServerHello (Server)

IAIKIAIK

ServerHello (Server)

Chosen TLS
version

Random number

Selected cipher
suite

Selected
compression
method

IAIKIAIK

Certificate (Server)

IAIKIAIK

Certificate (Server)

IAIKIAIK

ServerKeyExchange (Server)

IAIKIAIK

ServerKeyExchange (Server)

IAIKIAIK

CertificateRequest (Server)

Missing...
Most HTTPS
servers do not
require a
client
certificate

IAIKIAIK

ServerHelloDone (Server)

Tells the client that ServerHello and associated messages have been sent

IAIKIAIK

TLS - ServerHelloDone

IAIKIAIK

Certificate (Client)

Missing...
No certificate
was requested
by the server

IAIKIAIK

ClientKeyExchange (Client)

IAIKIAIK

ClientKeyExchange (Client)

IAIKIAIK

ChangeCipherSpec (Client)

IAIKIAIK

ChangeCipherSpec (Client)

From client
ChangeCipherSpec:

telling the server 
that everything is encrypted from now

IAIKIAIK

Finished (Client)

IAIKIAIK

Finished (Client)

Finished:

sending hash, MAC of previous handshake messages (encrypted)

server decrypts message, verifies hashes

IAIKIAIK

Application Data (Client, Server)

IAIKIAIK

TLS - Encrypted Application Data

Encrypted HTTP traffic

IAIK

Topics
Crypto Crash Course

TLS details

Handshake and how to achieve confidentiality, integrity, authenticity

Client TLS

Cipher suites, Perfect Forward Secrecy

HSTS, Certificate Pinning

Attacks

Trust

Heartbleed

SSLStrip

Flame

IAIK

Topics
Crypto Crash Course

TLS details

Handshake and how to achieve confidentiality, integrity, authenticity

Client TLS

Cipher suites, Perfect Forward Secrecy

HSTS, Certificate Pinning

Attacks

Trust

Heartbleed

SSLStrip

Flame

IAIK

Cipher suites
key exchange, agreement: RSA, DH, DHE, ECDH, ECDHE

How to exchange the bulk encryption key? (req for confidentiality, integrity)

authentication: RSA, DSS, ECDSA

How to verify whether the server is authentic? (authenticity)

bulk ciphers: AES, 3DES, RC4

How to encrypt data? (confidentiality)

message authentication: SHA{256, 384}, MD5 (!)

How to verify the integrity of the transmitted data? (integrity)

perfect forward secrecy:

Depends on deployed key exchange/agreement algorithm

IAIKIAIK

Cipher Suites
Structure

[SSL|TLS], [key exchange], [authentication], [bulk cipher], [message
auth]

Examples

TLS_RSA_WITH_AES_128_CBC_SHA (TLS, RSA, RSA, AES 128 CBC, SHA)

TLS_ECDHE_RSA_WITH_RC4_128_SHA (TLS, ECDHE, RSA, RC4 128,
SHA)

Many possible cryptographic protocols for key exchange, encryption,
authentication, message integrity

IAIK

Cipher Suites

IAIK

Perfect Forward Secrecy

Perfect Forward Secrecy (PFS)

Popped up again due to NSA topic…

Even if an attacker gains access to the long term keys

e.g. RSA keys used for the X509 certificates

the session keys used for bulk encryption cannot be derived

http://crypto.stackexchange.com/questions/8933/how-can-i-use-ssl-tls-
with-perfect-forward-secrecy

http://crypto.stackexchange.com/questions/8933/how-can-i-use-ssl-tls-with-perfect-forward-secrecy

IAIK

NO PFS EXAMPLE (simplified TLS handshake)

Certificate

Public KeyPrivate Key

Client

AES KEY

Serverwant to establish secure
communication

Certificate

Public Key

Certificate

Public Key

Certificate

Public KeyPrivate Key

send certificate

generate random key

Verify Cert

Public Key

AES KEY Wrapped AES KEY

encrypt AES
key

send wrapped AES key
Certificate

Public Key

Certificate

AES KEY

Certificate

Public Key Private Key

AES KEY

protected data

encrypt
decrypt

encrypt
decrypt

Certificate

Public KeyPrivate Key

Wrapped AES KEY AES KEY

decrypt
AES key

THE PROBLEM

IAIK

NO PFS EXAMPLE

Certificate

Public KeyPrivate Key

Server
Wrapped AES KEY

protected data

Client Server

Wrapped AES KEY

protected data

Client Server

Wrapped AES KEY

protected data

Client Server10.10.2013
capture and store data

12.03.2012
capture and store data

01.01.2014
capture and store data

IAIK

NO PFS EXAMPLE

Certificate

Public KeyPrivate Key

Server
Wrapped AES KEY

protected data

Client Server

Wrapped AES KEY

protected data

Client Server

Wrapped AES KEY

protected data

Client Server10.10.2013
capture and store data

12.03.2012
capture and store data

01.01.2014
capture and store data

10.04.2015
gain access to private key

decrypt keys and data

IAIK

NO PFS EXAMPLE

TLS_RSA_WITH_AES_128_CBC_SHA

which actually means: TLS_RSA_RSA_WITH_AES_128_CBC_SHA

key exchange via RSA (gaining a bulk encryption key, here AES)

authentication via RSA (server proofs its authenticity)

bulk cipher: AES_128_CBC

message authentication: SHA based MAC

IAIK

PFS EXAMPLE
ECDHE_RSA_WITH_AES_128_GCM_SHA

ECDH_RSA_WITH_AES_128_GCM_SHA

which actually means

Key exchange: ECDHE - Elliptic Curve Diffie Hellman Key Exchange,
Ephemeral

Authentication: RSA

Bulk cipher: AES_128_GCM

Message authentication: SHA based MAC

RSA and elliptic curves?

IAIK

PFS EXAMPLE

ECDHE: Elliptic Curve Diffie Hellman - Ephemeral (PFS)

IAIK

PFS EXAMPLE

ClientHello,
ServerHello messages  
may include curve
parameters for ECC use

Certificate: sends
certificate to client

IAIK

PFS EXAMPLE

ECDHE  
Elliptic Curve Diffie 
Hellman - Ephemeral

ServerKeyExchange needed!

Server generates “ephemeral key pair”

Sends signed public key and parameters to the client

Signed with private key of server certificate

Could be RSA or ECDSA etc. depending on the certificate

IAIK

PFS EXAMPLE

ClientKeyExchange!

For ECDHE and ECHD, client always generates ephemeral key pair

Parameters, keys are sent to server via ClientKeyExchange Message

Client, Server can calculate common secret via ECDH

IAIK

ECDHE_RSA/ECDSA
Certificate

Public Key

Private Key Fix

fixed key pair from
certificate

Public Key

Private Key

Public Key

Private Key Eph

ephemeral key
pair

ephemeral key
pair

ParametersParametersparameters parameters
and key

Public Key

Parameters

Certificate

Public Key

Certificate

Public Key

Certificate

Public Key

SIGN

Certificate

Public Key

Private Key fix

Certificate

Public Key

Private Key fix

certificate

generating ephemeral keys

signed!

ServerKeyExchange

Public Key

Private Key Eph

Parameters

Public Key

Private Key

Parameters
Certificate

Public Key

VERIFY

Public Key

Private Key

Parameters Certificate

Public Key

Private Key fix

Public Key

Private Key Eph

ParametersClientKeyExchange

Public Key

Parameters

Key Derivation
Private Key

Public Key

ParametersCertificate

Public Key

Public Key

key
derivation shared key

Private Key Eph Public Key

key
derivationshared key

Private Key Private Key Ephdelete ephemeral keys…

bulk data encryption

IAIK

PFS EXAMPLE

YANSA - Yet Another National
Security Agency

Server

Certificate

Public Key

Private Key fix

Client

Certificate

Public Key

Public Key E1

Public Key E1

Client

Certificate

Public Key

Public Key E2

Public Key E2 shared key

cannot be derived
ephemeral private keys
are missing

IAIK

Topics
Crypto Crash Course

TLS details

Handshake and how to achieve confidentiality, integrity, authenticity

Client TLS

Cipher suites, Perfect Forward Secrecy

HSTS, Certificate Pinning

Attacks

Trust

Heartbleed

SSLStrip

Flame

IAIK

HSTS - HTTP Strict Transport Security

Attacks are often based on HTTPS to HTTP downgrades

Web page offers HTTPS/HTTP, 
attacker injects HTTP links to force user to user weak HTTP communication

Web page offers HTTPS only 
attacker uses a proxy (SSLSSTRIP) to move user to HTTP communications.

How to deal with that?

IAIK

HSTS - HTTP Strict Transport Security
Tell the browser that all connections to a domain/host are HTTPS only

From now on the browser does not accept HTTP communication to that site

How?

via an HTTP header  
Strict-Transport-Security: max-age=31536000; includeSubDomains;

header can only be set during a valid HTTPS request, headers in HTTP
only communication are ignored

http://tools.ietf.org/html/rfc6797

that’s it? is everything secure now?

http://tools.ietf.org/html/rfc6797

IAIK

Certificate Pinning

PKI trust

many CAs in trust store

TLS trust based on: (referring to crypto crash course)

(1) certificate issued by a trusted CA

(2) compare DNS host name with host name in CN of certificate

what happens if:  

subject in certificate

dns entry

IAIK

Certificate Pinning
Introduce certificate pinning (http://www.rfc-editor.org/rfc/rfc7469.txt)

remember hash values (pins) of public keys associated with X509
certificates of TLS servers

if PIN changes (meaning that the certificate changes), drop connection
even if certificate would be trustworthy and DNS name matches with
subject CN

certificate pins are either stored in browser (or app) or submitted (like
HSTS) via HTTP headers during the first connection (same issues as with
HSTS, first connection must be secure)

http://www.rfc-editor.org/rfc/rfc7469.txt

IAIK

certificate pinning

Getting necessary

to avoid MITM attacks

to deal with the problem of many trusted CAs in the browser that have
different quality levels

Many more details for different operating systems

https://www.owasp.org/index.php/
Certificate_and_Public_Key_Pinning

https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning

