DANE

Jakob Schlyter – jakob@kirei.se – Kirei AB Workshop "E-Mail-Sicherheit: Was Provider beitragen können"

Jakob Schlyter

Kirei AB

DNSSEC since 1999

DNSSEC for .SE in 2007

Root DNSSEC in 2010

Swedish e-Id Scheme

SOU 2010:104

RFC 6698

DANE

Why DANE?

Constrained trust

Keep PKI on a leash

Why?

In theory PKI is simple

Issuance

Revocation

Validation

In practice, PKI is complex

Identity proofing via insecure channels

No name constraints

Relaxed revocation checks

Limit trust in PKI using DNSSEC

Limit the amount of damage that a CA can do

Bridge trust using DNSSEC

Validate identity without the legacy PKI

If DNS is used for identity proofing ...

... and DNSSEC provides data origin authentication,

why involve another 3rd party?

How DANE?

TLSA

Provides bindings of keys to domains that are asserted by DNS

CA Lock

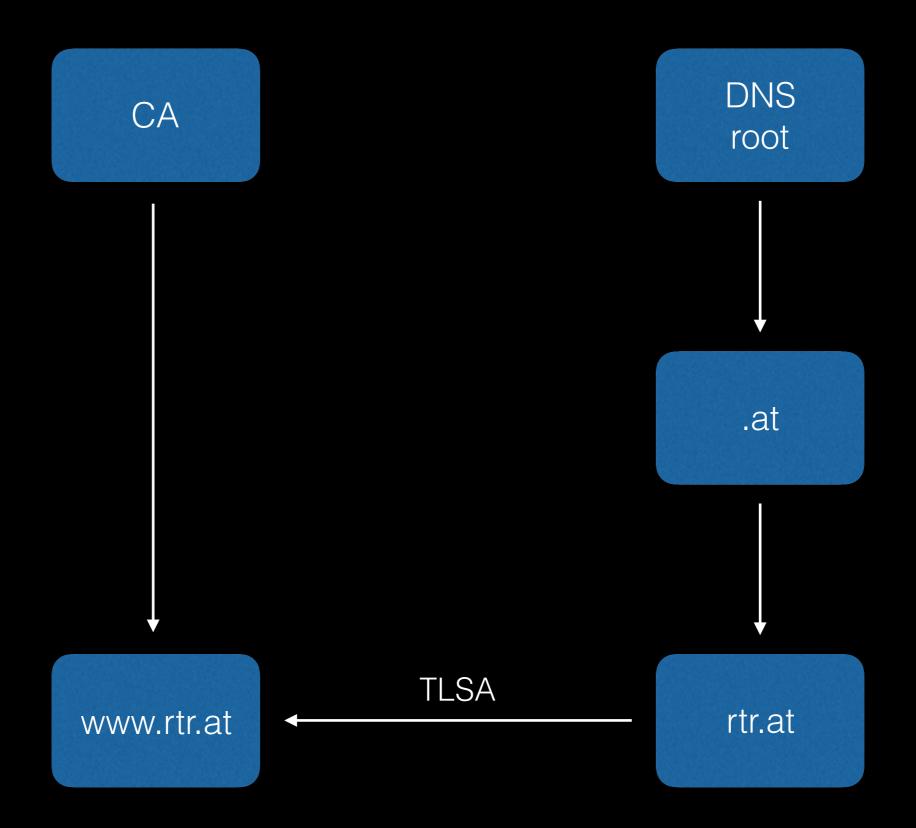
- TLSA enumerates acceptable CA certs
- Only accept certificates under a specific CA
- Optionally used together with classic PKIX

Protects against CA malpractice

Certificate Lock

- TLSA enumerates acceptable certificates for end entities (servers)
- Only accept specific certificates
- Optionally used together with classic PKIX

Addresses the problem with fraudulently issued certificates



Self-signed Certificates

 Self-signed key pair certified by the user, or by a private CA

Enables TLS without depending on existing PKI infrastructure

kirei

	PKI	DANE
Authentication	DNS for identity proofing	DNSSEC when used
Revocation	OSCP / CRL / CT	DNSSEC
Validation	PKIX	PKIX & DNSSEC

kirei

DANE for Mail Transport Security

How does SMTP authentication & encryption work today?

Not

Or rather...

Opportunistic

No widespread deployment of universal trusted certificates

No endpoint validation

Depending on trust in DNS and routing

RFC 7672

SMTP Security via Opportunistic DNS-Based Authentication of Named Entities (DANE) Transport Layer Security (TLS)

Example: SMTP with DANE

kirei.se

MX for kirei.se?

spg.kirei.se

TLSA for __25._tcp.spg.kirei.se?

TLSA 3 1 1

Hash of the public key from the X.509 certificate for spg.kirei.se

#win

Multiple implementations

Postfix by Wietse Venema

Halon SMTP platform

Inbound

Publish TLSA records in a signed DNS zone

Outbound

DNSSEC validation at mail egress

Validate TLSA for outbound connections

DANE for End-to-end Mail Security

PGP mostly used by the technical community

S/MIME supported by not widely deployed

Why?

S/MIME requires certificates

DANE for OpenPGP

DANE for S/MIME

Signed email

Encrypted email

Subjects are email addresses

jakob@kirei.se

SHA2-256("jakob") [0:28]

5205c62493888149cb6953d0a542

5205c62493888149cb6953d0a542 _smimecert.kirei.se.

SMIMEA 3 0 0

Full certificate for jakob@kirei.se

Work in progress

Local part processing

jakob@kirei.se

≠

Jakob@kirei.se

mariahilfer-straße@rtr.at

≠

mariahilfer-strasse@rtr.at

jakob@kirei.se